...
首页> 外文期刊>Thin Solid Films >Nanoscale characterization of squaraine-fullerene-based photovoltaic active layers by atomic force microscopy mechanical and electrical property mapping
【24h】

Nanoscale characterization of squaraine-fullerene-based photovoltaic active layers by atomic force microscopy mechanical and electrical property mapping

机译:基于原子力显微镜的机械和电性能图,对基于方酸-富勒烯的光伏活性层进行纳米表征

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency of organic solar cells can be increased by careful control of the nanoscale morphology of a dispersed bulk heterojunction device. Atomic force microscopy (AFM) has often been used to characterize morphology but debate persists over the value of traditional AFM measurements since the technique only addresses the active layer topography, and provides insufficient contrast to differentiate between components in a well-mixed composite. Using newer Kelvin Probe Force Microscopy (KPFM) and Quantitative Nanomechanical Mapping (QNM) modes, we demonstrate contrast due to differing elastic modulus and surface potentials between donor and acceptor materials and highlight the value of these techniques to understand critical materials properties as part of a comprehensive nanomorphology study. We test the value of our approach using blends of each of two anilinic squaraines with phenyl-C61-butyric acid methylester. These two squaraine materials differ in chemical compatibility with the standard fullerene acceptor. We vary annealing conditions for our blended films and use the described AFM approaches to demonstrate changing domain sizes, which are affected by chemical compatibility with the fullerene. We demonstrate how KPFM measurements go beyond QNM to provide contrast between materials with reproducibility at a higher image resolution. With the ability to measure contrast between donor and acceptor material, we make a strong case for non-destructive microscopy data to measure effects of variations in annealing temperature on squaraine film morphology, which we confirm influences device performance and efficiency. These conclusions are important for informing material selection for long-term use of associated commercial devices in the field.
机译:通过仔细控制分散的本体异质结器件的纳米级形态,可以提高有机太阳能电池的效率。原子力显微镜(AFM)通常被用来表征形态,但是关于传统AFM测量的价值的争论仍在继续,因为该技术仅解决了活性层的形貌,并且无法提供足够的对比度来区分充分混合的复合材料中的组分。使用更新的开尔文探针力显微镜(KPFM)和定量纳米力学映射(QNM)模式,我们证明了由于施主材料与受主材料之间的弹性模量和表面电势不同而产生的对比,并着重强调了这些技术的价值,以了解材料的关键特性。全面的纳米形态学研究。我们使用两种苯胺类方酸与苯基-C61-丁酸甲酯的共混物来测试该方法的价值。这两种方酸材料与标准富勒烯受体的化学相容性不同。我们改变了混合膜的退火条件,并使用所述的AFM方法来证明变化的畴尺寸,这受与富勒烯化学相容性的影响。我们演示了KPFM测量如何超越QNM,以更高的图像分辨率在材料之间提供可重现性的对比。由于能够测量供体和受体材料之间的对比,我们为无损显微镜数据提供了有力的依据,以测量退火温度变化对方石英薄膜形貌的影响,我们确认其会影响器件性能和效率。这些结论对于为长期使用相关商业设备提供材料选择信息很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号