首页> 外文期刊>Water resources research >A Structure Function Model Recovers the Many Formulations for Air-Water Gas Transfer Velocity
【24h】

A Structure Function Model Recovers the Many Formulations for Air-Water Gas Transfer Velocity

机译:结构函数模型恢复了空气-水气体传输速度的许多公式

获取原文
获取原文并翻译 | 示例
           

摘要

Two ideas regarding the structure of turbulence near a clear air-water interface are used to derive a waterside gas transfer velocity k(L) for sparingly and slightly soluble gases. The first is that k(L) is proportional to the turnover velocity described by the vertical velocity structure function D-ww(r), where r is separation distance between two points. The second is that the scalar exchange between the air-water interface and the waterside turbulence can be suitably described by a length scale proportional to the Batchelor scale l(B) = Sc-1/2, where Sc is the molecular Schmidt number and eta is the Kolmogorov microscale defining the smallest scale of turbulent eddies impacted by fluid viscosity. Using an approximate solution to the von Karman-Howarth equation predicting D-ww(r) in the inertial and viscous regimes, prior formulations for k(L) are recovered including (i) kL = root 2/15Sc(-1/2)v(K), v(K) is the Kolmogorov velocity defined by the Reynolds number v(K)etau = 1 and nu is the kinematic viscosity of water; (ii) surface divergence formulations; (iii) k(L) alpha Sc(-1/2)u(*), where u(*) is the waterside friction velocity; (iv) k(L) alpha Sc-1/2 root g nu/u(*) for Keulegan numbers exceeding a threshold needed for long-wave generation, where the proportionality constant varies with wave age, g is the gravitational acceleration; and (v) k(L) = root 2/15Sc(-1/2) (nu g beta(o)q(o))(1/4) in free convection, where q(o) is the surface heat flux and beta(o) is the thermal expansion of water. The work demonstrates that the aforementioned k(L) formulations can be recovered from a single structure function model derived for locally homogeneous and isotropic turbulence.
机译:关于清澈的空气-水界面附近的湍流结构,有两种思路可用来推导稀有和微溶性气体的水侧气体传输速度k(L)。首先是k(L)与垂直速度结构函数D-ww(r)描述的周转速度成比例,其中r是两点之间的分离距离。第二个是可以用与Batchelor标度l(B)= Sc-1 / 2成比例的长度标度适当地描述空气-水界面与水侧湍流之间的标量交换,其中Sc是分子施密特数和eta是Kolmogorov微型标尺,它定义了受流体粘度影响的最小湍流涡流。使用对惯性和粘性状态下的D-ww(r)的von Karman-Howarth方程的近似解,可以得到先前的k(L)公式,包括(i)kL =根2 / 15Sc(-1/2) v(K),v(K)是由雷诺数v(K)eta / nu = 1定义的Kolmogorov速度,nu是水的运动粘度; (ii)表面发散配方; (iii)k(L)alpha Sc(-1/2)u(*),其中u(*)是水边摩擦速度; (iv)Keulegan数的k(L)alpha Sc-1 / 2根g nu / u(*)超过长波产生所需的阈值,其中比例常数随波龄而变化,g为重力加速度;和(v)k(L)=根2 / 15Sc(-1/2)(nu g beta(o)q(o))(1/4)在自由对流中,其中q(o)是表面热通量β(o)是水的热膨胀。这项工作表明上述k(L)公式可以从为局部均质和各向同性湍流导出的单个结构函数模型中恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号