...
首页> 外文期刊>Wind Energy >A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation
【24h】

A smart rotor configuration with linear quadratic control of adaptive trailing edge flaps for active load alleviation

机译:具有自适应后缘襟翼的线性二次控制的智能转子配置,可有效减轻负载

获取原文
获取原文并翻译 | 示例
           

摘要

The paper proposes a smart rotor configuration where adaptive trailing edge flaps (ATEFs) are employed for active alleviation of the aerodynamic loads on the blades of the NREL 5 MW reference turbine. The flaps extend for 20% of the blade length and are controlled by a linear quadratic (LQ) algorithm based on measurements of the blade root flapwise bending moment. The control algorithm includes frequency weighting to discourage flap activity at frequencies higher than 0.5 Hz. The linear model required by the LQ algorithm is obtained from subspace system identification; periodic disturbance signals described by simple functions of the blade azimuthal position are included in the identification to avoid biases from the periodic load variations observed on a rotating blade. The LQ controller uses the same periodic disturbance signals to handle anticipation of the loads periodic component. The effects of active flap control are assessed with aeroelastic simulations of the turbine in normal operation conditions, as prescribed by the International Electrotech-nical Commission standard. The turbine lifetime fatigue damage equivalent loads provide a convenient summary of the results achieved with ATEF control: 10% reduction of the blade root flapwise bending moment is reported in the simplest control configuration, whereas reductions of approximately 14% are achieved by including periodic loads anticipation. The simulations also highlight impacts on the fatigue damage loads in other parts of the structure, in particular, an increase of the blade torsion moment and a reduction of the tower fore-aft loads.
机译:本文提出了一种智能转子配置,其中采用自适应后缘襟翼(ATEF)来主动减轻NREL 5 MW参考涡轮机叶片上的空气动力负荷。襟翼延伸叶片长度的20%,并根据叶片根部襟翼向弯矩的测量值,通过线性二次(LQ)算法进行控制。控制算法包括频率加权,以阻止频率高于0.5 Hz的襟翼活动。 LQ算法所需的线性模型是从子空间系统识别中获得的。通过叶片方位角位置的简单功能描述的周期性扰动信号包括在标识中,以避免在旋转叶片上观察到的周期性负载变化产生偏差。 LQ控制器使用相同的周期性干扰信号来处理负载周期性分量的预期。根据国际电工技术委员会标准的规定,在正常运行条件下,通过涡轮的气动弹性仿真来评估主动襟翼控制的效果。涡轮机寿命疲劳损伤当量载荷为使用ATEF控制所获得的结果提供了方便的总结:在最简单的控制配置中,据报道叶片根部襟翼向弯矩减小了10%,而通过考虑到周期性载荷,则减少了约14% 。模拟还突出了对结构其他部分的疲劳损伤载荷的影响,特别是叶片扭转力矩的增加和塔架前后载荷的减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号