...
首页> 外文期刊>Physics of fluids >Simulation of drag reduction in superhydrophobic microchannels based on parabolic gas-liquid interfaces
【24h】

Simulation of drag reduction in superhydrophobic microchannels based on parabolic gas-liquid interfaces

机译:基于抛物线气液界面的超疏水微通道减阻模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Based on the given parabolic gas-liquid interfaces, a two-dimensional fluid flow in superhydrophobic microchannels is numerically simulated with the steady volume of fluid model in the laminar regime. The influence of several crucial parameters on drag reduction effect is discussed. The results indicate that the superhydrophobic microchannel containing rectangular cavities displays significant drag reduction effect. With increasing inlet velocity, the pressure drop reduction decreases slightly. Augments in the pressure drop reduction tend to be large with the increase of the cavity fraction or the decrease of the channel height. The results also reveal that the variation of the normalized slip length with the cavity fraction tends to be more dramatic when the channel height is smaller. As the parabolic height of the gas-liquid interface is enlarged, both the pressure drop reduction and the normalized slip length decrease linearly, while fRe increases linearly. The impact of the cavity depth on the normalized slip length, fRe, and the pressure drop reduction is minimal supposing the depth of the cavity is greater than 40% of its width. The drag reduction effect corresponding to the dovetail cavity model is the best, and the consequence of the rectangular, trapezoidal, and triangular cavity models sequentially worsens. Published by AIP Publishing.
机译:基于给定的抛物线气液界面,以层流状态下的稳态体积流体模型对超疏水微通道中的二维流体流动进行了数值模拟。讨论了几个关键参数对减阻效果的影响。结果表明,含有矩形孔洞的超疏水微通道具有明显的减阻效果。随着入口速度的增加,压降的降低会略有下降。随着空腔分数的增加或通道高度的减小,压降减小的增加倾向于较大。结果还表明,当通道高度较小时,归一化滑动长度随腔分数的变化趋于更加剧烈。当气液界面的抛物线高度增大时,压降的减小和归一化的滑移长度均线性减小,而fRe线性增大。假设空腔的深度大于其宽度的40%,则空腔深度对归一化的滑移长度fRe和压降减小的影响最小。与燕尾腔模型相对应的减阻效果最佳,并且矩形,梯形和三角形腔模型的结果依次变差。由AIP Publishing发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号