首页> 外文期刊>Plasma physics and controlled fusion >Neutrino plasma coupling in dense astrophysical plasmas
【24h】

Neutrino plasma coupling in dense astrophysical plasmas

机译:中微子等离子体在稠密天体等离子体中的耦合

获取原文
获取原文并翻译 | 示例
           

摘要

There is considerable interest in the propagation dynamics of intense neutrino beams in a background dispersive medium such as dense plasmas, particularly in the search for a mechanism to explain the dynamics of type II supernovae. Neutrino interactions with matter are usually considered as single particle interactions. All the single particle mechanisms describing the dynamical properties of neutrinos in matter are analogous with the processes involving single electron interactions with a medium such as Compton scattering, Cerenkov radiation, etc. However, it is well known that beams of electrons moving through a plasma give rise to a new class of processes known as collective interactions, such as two stream instabilities, which result in either the absorption or generation of plasma waves. Employing the relativistic kinetic equations for neutrinos interacting with dense plasmas via the weak force, we explore collective plasma streaming instabilities driven by neutrino beams. We examine the anomalous transfer between neutrinos and dense plasma via excitation of electron plasma waves. The nonlinear coupling between an intense neutrino beam and a plasma reveals the presence of two regimes, a hydrodynamic regime and a kinetic regime. The latter is responsible for Landau damping or growth of electron plasma waves. In dense fusion stellar plasmas neutrino Landau damping can play a significant role as an additional stellar plasma cooling process. Another interesting result is an asymmetry in the momentum balance imported by the neutrinos to the core of the exploding star due to symmetry breaking by the collapsed star's magnetic fields. This results in a directed velocity of the resulting neutron star or pulsar, explaining the so called 'birth' velocity.
机译:人们强烈关注强中微子束在背景弥散介质(例如稠密等离子体)中的传播动力学,尤其是在寻找解释II型超新星动力学的机制方面。中微子与物质的相互作用通常被认为是单粒子相互作用。描述物质中微子动力学特性的所有单粒子机理都类似于涉及单电子与介质相互作用的过程,例如康普顿散射,切伦科夫辐射等。但是,众所周知,穿过等离子体的电子束会产生引起了一种称为集体相互作用的新过程,例如两个流的不稳定性,这导致了等离子体波的吸收或产生。利用相对论动力学方程,中微子通过弱力与致密等离子体相互作用,我们探索了中微子束驱动的集体等离子体流不稳定性。我们通过电子等离子体波的激发来检查中微子和稠密等离子体之间的异常转移。强中微子束与等离子体之间的非线性耦合揭示了两种状态的存在,即流体动力状态和动力学状态。后者负责Landau阻尼或电子等离子体波的增长。在密集聚变恒星等离子体中,中微子Landau阻尼可作为额外的恒星等离子体冷却过程发挥重要作用。另一个有趣的结果是,由于被坍缩的恒星磁场对称性破坏,中微子输入到爆炸恒星核心的动量平衡不对称。这导致产生的中子星或脉冲星的定向速度,解释了所谓的“出生”速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号