...
首页> 外文期刊>Plasma physics and controlled fusion >The divertor program in stellarators
【24h】

The divertor program in stellarators

机译:恒星的转向程序

获取原文
           

摘要

Two significiant problems that need to be solved for any future fusion device are heat removal and particle control. A very promising method to attack these problems in tokamaks and helical devices is, the use of a divertor, providing a controlled interaction zone between plasma and wall. By carefully designing a divertor, conditions can be created in front of the divertor targets, which lead to a. sufficient reduction of the power load on the targets by strong radiation redistribution. Any solution of course I needs to allow for an energy confinement which is at least sufficient for the realization of a fusion reactor. Since energy confinement has been found to be strongly related to edge anomalous transport and edge plasma profiles,the ultimate aim is to find an integral solution which is optimum with respect to exhaust, heat load and energy confinement. Two different types of divertors are presently being investigated in helical devices: the 'helical divertor' and the 'island divertor'. So far divertor' concepts have been investigated only in a few helical devices. Theoretical and experimental efforts have mainly concentrated on the suitability of divertor magnetic field structures, While detailed studies of the divertor plasma properties for the two types of divertor configurations have only recently begun. In the course of this exploration, a promising new high-density H-mode (HDH) plasma operational regime has been discovered on the Wendelstein stellarator W7-AS. It benefits from high-energy (up to twice the value of the International Stellarator Scaling ISS95) and. low impurity confinement times, complemented by edge radiated power fractions of up to 90% in detached regimes. This allowed quasi-steady-state operation for up to 50 energy confinement times and so far was only constrained by machine operability. [References: 92]
机译:任何未来的聚变设备都需要解决的两个重要问题是除热和颗粒控制。解决托卡马克和螺旋装置中这些问题的一种非常有前途的方法是使用分流器,在等离子体和壁之间提供受控的相互作用区域。通过精心设计分流器,可以在分流器目标之前创建条件,从而导致通过强烈的辐射重新分布,可以充分降低目标的功率负载。当然,任何解决方案我都需要考虑能量限制,该能量限制至少足以实现聚变反应堆。由于已发现能量限制与边缘异常传输和边缘等离子体轮廓密切相关,因此最终目的是找到一种在排气,热负荷和能量限制方面最佳的整体解决方案。目前正在螺旋装置中研究两种不同类型的偏滤器:“螺旋偏滤器”和“岛偏滤器”。到目前为止,仅在少数螺旋装置中研究了偏滤器的概念。理论和实验工作主要集中在偏滤器磁场结构的适用性上,而对两种偏滤器结构的偏滤器等离子体特性的详细研究只是最近才开始的。在此探索过程中,在Wendelstein恒星机W7-AS上发现了一种有希望的新的高密度H模式(HDH)等离子体操作方案。它受益于高能量(高达国际Stellarator Scaling ISS95的两倍)和。低的杂质限制时间,在分离状态下可得到高达90%的边缘辐射功率分数的补充。这允许准稳态操作最多进行50次能量限制时间,到目前为止,仅受机器可操作性的限制。 [参考:92]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号