...
首页> 外文期刊>Plasmonics >Probing the Localized Surface Plasmon Field of a Gold Nanoparticle-Based Fibre Optic Biosensor
【24h】

Probing the Localized Surface Plasmon Field of a Gold Nanoparticle-Based Fibre Optic Biosensor

机译:探索基于金纳米粒子的光纤生物传感器的局部表面等离子体场。

获取原文
获取原文并翻译 | 示例
           

摘要

Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-mu m core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d (P)) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d (P) compared to d (P) obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d (P). The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.
机译:金纳米颗粒(GNP)已用于各种基于局部表面等离子体共振(LSPR)的光学传感器系统中,并已以多种形式使用,例如胶体悬浮液,固定在平坦表面或光纤上的GNP。影响这些系统灵敏度的关键参数是表面等离子体激元的有效穿透深度。这项研究旨在确定在固定的基于GNP的LSPR光学生物传感器的情况下,等离激元穿透深度。用于实验的光学生物传感器是芯直径为200微米,弯曲直径为1.5毫米的U型弯曲光纤探头,上面固定有GNP。在固定的GNP上形成多层纳米结构用于研究局部表面等离子体激元的场。在这项研究中探索了两个多层纳米结构,即。通过依次带相反电荷的聚电解质的逐层(LBL)沉积形成的聚电解质多层膜和通过顺序固定两种互斥的抗体形成的免疫球蛋白G(IgG)多层膜。通过测量每个分析物层的沉积量来测量LSPR吸光度变化,以确定LSPR生物传感器的等离激元渗透深度(d(P))。与从聚电解质多层获得的d(P)相比,用IgG多层探测等离子体激元场至少产生了两倍高的d(P)。还研究了GNP大小的影响,以及三个直径的GNP。使用了18、36和45 nm。直径36 nm的GNP表现出最高的d(P)。这项研究的结果可能会为各种生物传感应用中基于LSPR的传感器的优化提供线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号