...
首页> 外文期刊>Plasmonics >Hybrid Graphene Oxide and NTC Semiconductor Material Absorbs and Transform Light Energy via a Novel Surface Nanoscale Plasmon Mechanical
【24h】

Hybrid Graphene Oxide and NTC Semiconductor Material Absorbs and Transform Light Energy via a Novel Surface Nanoscale Plasmon Mechanical

机译:混合石墨烯氧化物和NTC半导体材料通过新型表面纳米尺度等离激元力学吸收并转化光能

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene oxide (GO) was prepared using the improved Hummer method, and mono-dispersed manganese cobalt nickel oxide (MCN) semiconductor nanometer particles were synthesized and coated with GO. Under 980-nm infrared laser excitation, this novel hybrid material demonstrated nanometer-scale surface plasmon resonance. The same mechanism has previously only been reported in good conductors. Although the MCN semiconductor is a negative temperature coefficient material, it can realize the same effect as a good conductor. The experimental data indicated that the hybrid material absorbed infrared laser photothermal energy with a transformation efficiency more than fourfold larger than that of pure mono-disperse MCN semiconductor nanopowder. The chain heat conductivity velocity of the hybrid material compares favorably with that of metal in that it alters the laser radiation energy heat transfer method on the surface. The hybrid material is one new kind of photothermal energy transfer material by new chain nanoscale surface plasmon mechanical, it can absorb sunlight and ultra-red light totally, and is one excellent energy transform and absorb material for sunlight.
机译:使用改进的Hummer方法制备氧化石墨烯(GO),并合成了单分散锰钴氧化镍钴(MCN)半导体纳米颗粒,并用GO包覆。在980 nm红外激光激发下,这种新型的杂化材料表现出纳米级的表面等离子体共振。以前只在良导体中报道过这种机制。尽管MCN半导体是负温度系数材料,但它可以实现与良好导体相同的效果。实验数据表明,该杂化材料吸收了红外激光光热能,其转化效率是纯单分散MCN半导体纳米粉的转化效率的四倍以上。杂化材料的链导热率与金属的链导热率相比具有优势,因为它改变了表面上的激光辐射能量传热方法。杂化材料是一种通过新型链纳米级表面等离激元力学的新型光热能传递材料,可以完全吸收太阳光和超红光,是一种优良的能量转化和吸收太阳光的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号