...
首页> 外文期刊>Progress in photovoltaics >Optimization of interdigitated back contact silicon heterojunction solar cells: tailoring hetero-interface band structures while maintaining surface passiwation
【24h】

Optimization of interdigitated back contact silicon heterojunction solar cells: tailoring hetero-interface band structures while maintaining surface passiwation

机译:叉指背接触式硅异质结太阳能电池的优化:在保持表面钝化的同时调整异质界面带结构

获取原文
获取原文并翻译 | 示例
           

摘要

Interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells have the potential for high open circuit voltage (V_(OC)) due to the surface passivation and heterojunction contacts, and high short circuit current density (J_(SC)) due to all back contact design. Intrinsic amorphous silicon (a-Si:H) buffer layer at the rear surface improve the surface passivation hence V_(OC and J_(SC), but degrade fill factor (FF) from an "S" shape J-V curve. Two-dimensional (2D) simulation using "Sentaurus device" demonstrates that the low FF is related to the valence band offset (energy barrier) at the hetero-interface. Three approaches to the buffer layer are suggested to improve the FF: (1) reduced thickness, (2) increased conductivity, and/or (3) reduced band gap. Experimental IBC-SHJ solar cells with reduced buffer thickness (<5 nm) and increased conductivity with low boron doping significantly improves FF, consistent with simulation. However, this has only marginal effect on efficiency since J_(SC) and V_(OC) also decrease due to poor surface passivation. A narrow band gap a-Si:H buffer layer improves cell efficiency to 13.5% with unoptimized passivation quality. These results demonstrate that tailoring the hetero-interface band structure is critical for achieving high FF. Simulations predicts that efficiences >23% are possible on planar devices with optimized pitch dimensions and achievable surface passivation, and 26% with light trapping. This work provides criterion to design IBC-SHJ solar cell structures and optimize cell performance.
机译:指叉背接触式硅异质结(IBC-SHJ)太阳能电池由于表面钝化和异质结接触而具有高开路电压(V_(OC))的潜力,而由于所有这些均具有高短路电流密度(J_(SC))背接触设计。背面的本征非晶硅(a-Si:H)缓冲层改善了表面钝化,因此改善了V_(OC和J_(SC),但降低了“ S”形JV曲线的填充系数(FF)。二维( 2D)使用“ Sentaurus器件”进行的仿真表明,低FF与异质界面上的价带偏移(能垒)有关,建议采用三种缓冲层方法来改善FF:(1)减小厚度,( 2)增加电导率,和/或(3)减小带隙,实验IBC-SHJ太阳能电池具有减小的缓冲层厚度(<5 nm)和增加的电导率以及低硼掺杂,可以显着提高FF,这与仿真结果一致。 J_(SC)和V_(OC)也由于不良的表面钝化而降低了对效率的边际效应。窄带隙a-Si:H缓冲层在未优化钝化质量的情况下将电池效率提高到13.5%。异质界面带结构对于r实现高FF。仿真预测,在具有最佳间距尺寸和可实现的表面钝化的平面器件上,效率> 23%可能是有效的,而在光陷获的情况下,效率为26%。这项工作为设计IBC-SHJ太阳能电池结构和优化电池性能提供了标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号