首页> 外文期刊>Chemistry: A European journal >A New Glycorotaxane Molecular Machine Based on an Anilinium and a Triazolium Station
【24h】

A New Glycorotaxane Molecular Machine Based on an Anilinium and a Triazolium Station

机译:基于苯胺和三唑鎓工作站的新的轮叶烷类分子机器

获取原文
获取原文并翻译 | 示例
           

摘要

Rotaxanes have received much attention during the past decade, especially because they can be used as molecular machines.[1] Although many efforts have been carried out to design and synthesize molecular machines for nanotechnology, very few papers have been devoted to those, which could be used in the medicinal field.[2] Since glycosides are involved in a wide range of biological recognition processes, we recently published a very efficient synthesis of a mannosyl [2]rotaxane derivative using the Schmidt glycosylation method.[3] Glycorotaxanes, in which a glycosyl moiety is used as a stopper,[3, 4] constitute a class of molecules of great interest, as localization of the macrocycle along the glycosyl thread could influence the recognition towards their lectine receptors. Effectively, masking or unmasking the glycoside part, by moving the macrocycle more or less far from the glycoside end depending on the extracellular physiological pH of a cell, would allow for the subsequent study of the structureCactivity relationship of the glycosidic molecular machine for its specific receptor. With this aim, we describe in this paper the readily preparation of a mannosyl two-station molecular machine derivative, via the end-capping method of a semirotaxane. We also report the pH-controlled shuttling of the dibenzo[24]crown-8 (DB24C8) around the two very different binding sites. The synthetic strategy is based on the copper(I)-catalyzed Huisgen[5] alkyneCazide 1,3-dipolar cycloaddition, also called the CuAAC click chemistry,[6] and on the subsequent alkylation of the 1,2,3-triazole. Although recent papers described on one hand the use of the click chemistry as an efficient route to triazolrotaxanes[7] and on another hand the recognition study of anions by 1,2,3-triazolium receptors,[8] the N-methyltriazolium moiety has never been described as a molecular station for DB24C8 so far. However, since Busch et al. reported the ability for the DB24C8 to interact strongly with ammonium cation,[9] a wide variety of other template moieties, such as benzylic ammonium,[10] N-benzylic anilinium,[11] N,N-di-ACHTUNGTRENUNGalkyl-4,4-bipyridinium,[12] 1,2-bis(pyridinium)ethane cations,[13] have been investigated. Our targeted rotaxane 4 contains two molecular stations with different affinity for the DB24C8. (Scheme 1)
机译:轮烷在过去十年中受到了很多关注,特别是因为它们可以用作分子机器。[1]尽管为设计和合成用于纳米技术的分子机器付出了很多努力,但很少有论文专门针对那些可以在医学领域使用的论文。[2]由于糖苷参与广泛的生物识别过程,因此我们最近发表了使用Schmidt糖基化方法[3]高效合成甘露糖基[2]轮烷的衍生物。糖轮烷(其中糖基部分用作终止子)[3,4]构成了一类非常受关注的分子,因为大环沿着糖基线的定位会影响对其血凝素受体的识别。有效地,根据细胞的细胞外生理pH,通过使大环或多或少地从糖苷末端移开来掩盖或去掩盖糖苷部分,将允许随后研究糖苷分子机器对其特异性受体的结构-活性关系。 。为此目的,我们在本文中描述了通过半轮烷的封端方法容易地制备甘露糖基两工位分子机器衍生物。我们还报告了两个非常不同的结合位点周围的二苯并[24]皇冠8(DB24C8)的pH控制穿梭。合成策略基于铜(I)催化的Huisgen [5]炔烃叠氮化物1,3-偶极环加成反应,也称为CuAAC点击化学,[6]和随后的1,2,3-三唑烷基化反应。尽管最近的论文一方面描述了点击化学作为三唑烷的有效途径[7],另一方面描述了1,2,3-三唑鎓受体对阴离子的识别研究,[8] N-甲基三唑鎓部分具有到目前为止,从未将它描述为DB24C8的分子站。然而,由于布希等。报告了DB24C8与铵阳离子强相互作用的能力,[9]各种其他模板部分,例如苄基铵,[10] N-苄基苯胺,[11] N,N-di-ACHTUNGTRENUNG烷基-4,已经研究了4-联吡啶,[12] 1,2-双(吡啶)乙烷阳离子,[13]。我们的目标轮烷4包含两个对DB24C8具有不同亲和力的分子站。 (方案1)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号