...
首页> 外文期刊>Ultramicroscopy >Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations
【24h】

Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations

机译:矩形原子力显微镜微悬臂梁在液体中的弯曲振动模式对表面刚度变化的敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the resonance frequencies and modal sensitivity of flexural vibration modes of a rectangular atomic force microscope (AFM) cantilever immersed in a liquid to surface stiffness variations have been analyzed and a closed-form expression is derived. For this purpose, the Euler-Bernoulli beam theory is used to develop the AFM cantilever model in liquid. Then, an expression for the resonance frequencies of AFM cantilever in liquid is derived and the results of the derived expression are compared with the experimental measurements. Based on this expression, the effect of the surface contact stiffness on flexural mode of a rectangular AFM cantilever in a fluid is investigated and compared with the case that AFM cantilever operates in the air. The results show that in the low surface stiffness, the first mode is the most sensitive mode and the best image contrast is obtained by excitation this mode, but by increasing the sample surface stiffness the higher modes have better image contrast. In addition, comparison between modal sensitivities in air and liquid shows that the resonance frequency shifts in the air are greater than the shifts in the fluid, which means that for the similar surface stiffness the image contrast in air, is better than liquid.
机译:本文分析了矩形原子力显微镜(AFM)悬臂浸没在液体中的振动频率的共振频率和模态灵敏度对表面刚度的变化,并得出了封闭形式。为此,使用Euler-Bernoulli束理论来开发液体中的AFM悬臂模型。然后,导出液体中AFM悬臂的共振频率的表达式,并将该表达式的结果与实验测量值进行比较。根据该表达式,研究了表面接触刚度对矩形AFM悬臂在流体中的弯曲模式的影响,并将其与AFM悬臂在空气中工作的情况进行了比较。结果表明,在较低的表面刚度下,第一个模式是最敏感的模式,通过激发该模式可获得最佳的图像对比度,但是通过增加样品表面的硬度,较高的模式具有更好的图像对比度。另外,在空气和液体中的模态敏感度之间的比较表明,空气中的共振频率偏移大于流体中的共振频率偏移,这意味着对于相似的表面刚度,空气中的图像对比度要好于液体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号