...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Modular premotor drives and unit bursts as primitives for frog motor behaviors.
【24h】

Modular premotor drives and unit bursts as primitives for frog motor behaviors.

机译:模块化前置电动机驱动器和单元爆裂作为青蛙电动机行为的原语。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Spinal cord modularity impacts on our understanding of reflexes, development, descending systems in normal motor control, and recovery from injury. We used independent component analysis and best-basis or matching pursuit wavepacket analysis to extract the composition and temporal structure of bursts in hindlimb muscles of frogs. These techniques make minimal a priori assumptions about drive and motor pattern structure. We compared premotor drive and burst structures in spinal frogs with less reduced frogs with a fuller repertoire of locomotory, kicking, and scratching behaviors. Six multimuscle drives explain most of the variance of motor patterns (approximately 80%). Each extracted drive was activated with pulses at a single time scale or common duration (approximately 275 msec) burst structure. The data show that complex behaviors in brainstem frogs arise as a result of focusing drives to smaller core groups of muscles. Brainstem drives were subsets of the muscle groups from spinal frogs. The 275 msec burst duration was preserved across all behaviors and was most precise in brainstem frogs. These data support a modular decomposition of frog behaviors into a small collection of unit burst generators and associated muscle drives in spinal cord. Our data also show that the modular organization of drives seen in isolated spinal cord is fine-tuned by descending controls to enable a fuller movement repertoire. The unit burst generators and their associated muscle synergies extracted here link the biomechanical "primitives," described earlier in the frog, rat, and cat, and to the elements of pattern generation examined in fictive preparations.
机译:脊髓模块化影响我们对反射,发育,正常运动控制中的下降系统以及受伤后恢复的理解。我们使用独立成分分析和最佳基础或匹配追踪波包分析来提取青蛙后肢肌肉爆发的成分和时间结构。这些技术对驱动和电机模式结构做出了最小的先验假设。我们比较了蛙蛙的运动前驱动和爆发结构,而蛙蛙的运动能力,踢动和抓挠行为更完整,而蛙蛙的运动较少。六个多肌驱动器可以解释大多数运动模式的变化(大约80%)。每个提取的驱动器均以单个时标或通用持续时间(约275毫秒)的突发结构脉冲激活。数据表明,脑干青蛙的复杂行为是由于将注意力集中在较小的核心肌肉群上而引起的。脑干驱动器是来自青蛙的肌肉群的子集。在所有行为中都保留了275毫秒的爆发持续时间,在脑干青蛙中最为精确。这些数据支持将青蛙行为模块化分解为少量的单位爆发发生器和脊髓中相关的肌肉驱动器。我们的数据还显示,通过降低控件对在孤立的脊髓中看到的驱动器的模块化组织进行了微调,以实现更完整的运动方式。此处提取的单位爆发发生器及其相关的肌肉协同作用将青蛙,大鼠和猫中先前描述的生物力学“原语”与虚构制剂中检查的模式生成要素联系在一起。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号