...
【24h】

Chemical Bubble Dynamics and Quantitative Sonochemistry

机译:化学气泡动力学和声化学定量

获取原文
获取原文并翻译 | 示例
           

摘要

We model the collapse of a bubble by taking into account all the energy forms involved (i.e., mechanical, thermal, chemical, and radiative) and compare the calculated radical yields with sonochemical data in H_2O. Water decomposition plays a critical role in the energy balance, but trails equilibrium even in bubbles collapsing at subsonic speeds. Integration of the equation of bubble motion coupled with a full chemical mechanism reveals that (1) terminal gas temperatures and Mach numbers M_L increase in cooler water, (2) Γ_(OH), the number of OH-radicals produced per unit applied work at maximum M_L-when bubbles become unstable and disperse into the liquid-decreases at small and very large sound intensities. We show that available data on the sonochemical decomposition of volatile solutes-such as CCl_4, which is pyrolyzed within collapsing bubbles-are compatible with the efficient conversion of ultrasonic energy into transient cavitation. On this basis we calculate Γ_(OH) = (1 ± 0.5) * 10~(17) molecules/J for R_0 = 2 μm bubbles optimally sonicated at 300 kHz and 2.3 W/cm~2 by assuming mass and energy accommodation coefficients of α ≤ 7 * 10~(-3) and ∈ ≤ 0.04, respectively, in gas-liquid collisions, and values about 3-fold smaller after averaging over the nuclei size distribution. Since there is negligible radical recombination during dispersal, these Γ_(OH) values represent available oxidant yields, that agree with experimental data on iodide sonochemical oxidation. Bubbles emit little radiation, suggesting that only radial shock waves may heat small regions to the 10~4-10~5 K range required by some sonoluminescence experiments. The contribution of this sonoluminescent core to sonochemical action is, however, insignificant. We show that much larger accommodation coefficients would lead to higher temperatures, but also to O atoms rather than OH radicals and ultimately to excess O_2, at variance with experimental evidence.
机译:我们通过考虑所有涉及的能量形式(即机械的,热的,化学的和辐射的)对泡沫的崩溃进行建模,并将计算出的自由基产率与H_2O中的声化学数据进行比较。水的分解在能量平衡中起着至关重要的作用,但是即使在亚音速下气泡破裂时,水也会破坏平衡。气泡运动方程与一个完整的化学机理的积分表明,(1)冷却水中的末端气体温度和马赫数M_L增加,(2)Γ_(OH),即单位工作温度下产生的OH自由基数目当气泡变得不稳定并以小和非常大的声音强度分散到液体中时,最大M_L。我们表明,有关挥发性溶质(如CCl_4)的声波化学分解的可用数据与在破裂的气泡内热解的超声波溶质的有效转化兼容。在此基础上,通过假设质量和能量容纳系数为,对于在300 kHz和2.3 W / cm〜2最佳超声处理的R_0 = 2μm气泡,我们计算出Γ_(OH)=(1±0.5)* 10〜(17)分子/ J。在气-液碰撞中,α≤7 * 10〜(-3)和ε≤0.04,并且在对核尺寸分布进行平均后,其值小约3倍。由于在分散过程中自由基的重组可忽略不计,因此这些Γ_(OH)值表示可用的氧化剂收率,与碘化物声化学氧化的实验数据相符。气泡几乎不发出辐射,这表明只有径向冲击波才能将某些声致发光实验所需的小区域加热到10〜4-10〜5 K范围。然而,该声致发光核对声化学作用的贡献微不足道。我们发现,更大的调节系数会导致更高的温度,但也会导致O原子而不是OH自由基,并最终导致过量的O_2,这与实验证据有所不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号