...
首页> 外文期刊>The Journal of Experimental Biology >Dendritic spike back propagation in the electrosensory lobe of Gnathonemus petersii
【24h】

Dendritic spike back propagation in the electrosensory lobe of Gnathonemus petersii

机译:树突棘突触传播在Gnathonemus petersii的电感应叶中

获取原文
获取原文并翻译 | 示例
           

摘要

Spike timing-dependent plasticity that follows anti-Hebbian rules has been demonstrated at synapses between parallel fibers and inhibitory interneurons known as medium ganglionic layer (MG) neurons in the cerebellum-like electrosensory lobe of mormyrid fish. This plasticity is expressed when presynaptic activation is associated with a characteristically broad, postsynaptic action potential, lasting 7-15 ms, occurring within a window of up to 60-80 ms following synaptic activation. Since the site of plastic change is presumably in the apical dendrites, it is important to know where, when and how this broad spike is generated and the manner in which such events propagate within the intrinsic network of the electrosensory lobe. The electrosensory lobe has a strict layered organization that makes the preparation suitable for one dimension current source density analysis. Using this technique in an 'in vitro' interface slice preparation, we found that following either parallel fiber stimulation or an orthogonal field stimulus, a sink appeared in the ganglionic layer and propagated into the molecular layer. Intracellular records from MG somata showed these stimuli evoked broad action potentials whose timing corresponds to this sink. TTX application in the deep fiber layer blocked the synaptically evoked ganglionic layer field potential and the 'N3' wave of the outer molecular layer field potential simultaneously, while the molecular layer 'N1' and 'N2' waves corresponding to synaptic activation of the apical dendrites remained intact. These results confirm the hypothesis that the broad spikes of MG cells originate in the soma and propagate through the molecular layer in the apical dendritic tree, and suggest the possibility that this backpropagation may contribute to 'boosting' of the synaptic response in distal apical dendrites in certain circumstances.
机译:在平行纤维与抑制性中间神经元之间的突触之间已经证实了遵循反希伯来规则的穗时间依赖性可塑性,该抑制性中间神经元在mormyrid鱼的小脑样电感应叶中称为中等神经节层(MG)神经元。当突触前激活与特征性的,持续7-15 ms的突触后动作电位相关联时,即在突触激活后长达60-80 ms的窗口中发生时,就表示这种可塑性。由于塑性变化的位置大概在根尖树突中,因此重要的是要知道在何处,何时以及如何产生这种宽尖峰,以及此类事件在电传感叶的内在网络中传播的方式。电感应波瓣具有严格的分层结构,使其适合于一维电流源密度分析。在“体外”界面切片制备中使用该技术,我们发现在平行纤维刺激或正交场刺激之后,在神经节层中出现沉陷并传播到分子层中。 MG躯体细胞的细胞内记录显示,这些刺激诱发了广泛的动作电位,其时机与此沉陷相对应。 TTX在深层纤维层中的应用同时阻断了突触诱发的神经节层场电势和外分子层场电势的“ N3”波,而分子层“ N1”和“ N2”波对应于顶端树突的突触激活保持原样。这些结果证实了以下假设:MG细胞的宽尖峰起源于体细胞,并通过顶突树的分子层传播,并表明这种反向传播可能有助于“增强”远侧顶突树突触反应。某些情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号