首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Large eddy simulation of compressible channel flow - Arguments in favour of universality of compressible turbulent wall bounded flows
【24h】

Large eddy simulation of compressible channel flow - Arguments in favour of universality of compressible turbulent wall bounded flows

机译:可压缩通道流动的大涡模拟-支持可压缩湍流壁边界流通用性的参数

获取原文
获取原文并翻译 | 示例
           

摘要

The present study is a contribution to the analysis of wall-bounded compressible flows, including a special focus on wall modeling for compressible turbulent boundary layer in a plane channel. large eddy simulation (LES) of fully developed isothermal channel flows at Re = 3,000 and Re = 4,880 with a sufficient mesh refinement at the wall are carried out in the Mach number range 0.3 <= M <= 3 for two different source term formulations: first the classical extension of the incompressible configuration by Coleman et al. (J. Fluid Mech. 305:159-183, 1995), second a formulation presently derived to model both streamwise pressure drop and streamwise internal energy loss in a spatially developed compressible channel flow. It is shown that the second formulation is consistent with the spatial problem and yields a much stronger cooling effect at the wall than the classical formulation. Based on the present LES data bank, compressibility and low Reynolds number effects are analysed in terms of coherent structure and statistics. A study of the universality of the structure of the turbulence in non-hypersonic compressible boundary layers (M <= 5) is performed in reference to Bradshaw (Annu. Rev. Fluid. Mech. 9:33-54, 1977). An improvement of the van Driest transformation is proposed; it accounts for both density and viscosity changes in the wall layer. Consistently, a new integral wall scaling (y(c+)) which accounts for strong temperature gradients at the wall is developed for the present non-adiabatic compressible flow. The modification of the strong Reynolds analogy proposed by Huang et al. (J. Fluid Mech. 305:185-218, 1995) to model the correlation between velocity and temperature for non-adiabatic wall layers is assessed on the basis of a Crocco-Busemann relation specific to channel flow. The key role of the mixing turbulent Prandtl number Pr-m is pointed out. Results show very good agreement for both source formulations although each of them involve a very different amount of energy transfer at the wall.
机译:本研究是对壁面可压缩流的分析的一项贡献,包括特别关注平面通道中可压缩湍流边界层的壁面建模。对于两种不同的源项公式,在马赫数范围0.3 <= M <= 3的条件下,对Re = 3,000和Re = 4,880时充分发展的等温通道流动进行了大涡模拟(LES),并对壁进行了充分的网格细化:首先是Coleman等人对不可压缩结构的经典扩展。 (J. Fluid Mech。305:159-183,1995),第二种是目前推导的公式,用于模拟空间形成的可压缩通道流中的沿流压降和沿流内部能量损失。结果表明,第二种配方与空间问题是一致的,并且比经典配方在墙处产生了更强的冷却效果。基于当前的LES数据库,从相干结构和统计数据的角度分析了可压缩性和低雷诺数效应。参考Bradshaw(Annu。Rev. Fluid。Mech。9:33-54,1977)对非人为可压缩边界层(M <= 5)中湍流结构的普遍性进行了研究。提出了van Driest变换的改进;它说明了壁层中密度和粘度的变化。一致地,针对当前的非绝热可压缩流,开发了一种新的积分壁缩放比例(y(c +)),该比例解释了壁处的强温度梯度。黄等人提出的强雷诺类比的修改。 (J. Fluid Mech。305:185-218,1995)基于通道流量特有的Crocco-Busemann关系,对非绝热壁层的速度和温度之间的相关关系进行建模。指出了混合湍流普朗特数Pr-m的关键作用。结果表明两种来源的配方都非常吻合,尽管每种配方在壁上的能量转移量都非常不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号