...
首页> 外文期刊>Journal of Biomechanics >Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes.
【24h】

Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes.

机译:细胞周围流体空间的几何形状和尺寸的理想化导致对流体在骨细胞上的阻力所施加的纳米微应力的严重低估。

获取原文
获取原文并翻译 | 示例
           

摘要

To date, no published study has examined quantitatively the effect of geometric and dimensional idealization on prediction of the mechanical signals imparted by fluid drag to cell surfaces. We hypothesize that this idealization affects the magnitude and range of imparted forces predicted to occur at a subcellular level. Hence, we used computational fluid dynamics to predict magnitudes and spatial variation of fluid velocity and pressure, as well as shear stress, on the cell surface in two- and three-dimensional models of actual and idealized pericellular canalicular geometries. Furthermore, variation in actual pericellular space dimensions was analyzed statistically based on high-resolution transmitted electron micrographs (TEM). Accounting for the naturally occurring protrusions of the pericellular space delineating lamina limitans resulted in predictions of localized stress spikes on the cell surface, up to five times those predicted using idealized geometries. Predictions accounting for actual pericellular geometries approached those required to trigger cell activity in in vitro models. Furthermore, statistical analysis of TEM-based dimensions showed significant variation in the width of the canalicular space as well as the diameter of the cell process, both of which decrease with increasing distance from the cell body. For the first time to our knowledge, this study shows the influence of physiologic geometry per se on the nano-scale flow regimes in bone, and the profound influence of physiologic geometry on force magnitudes and variations imparted locally to cells through load-induced fluid flow.
机译:迄今为止,尚无已发表的研究定量地考察几何和尺寸理想化对流体阻力传递至细胞表面所产生的机械信号的预测的影响。我们假设这种理想化影响预计在亚细胞水平上发生的施加力的大小和范围。因此,我们使用计算流体动力学来预测实际和理想化细胞周围小管几何结构的二维和三维模型中细胞表面的流体速度,压力以及剪切应力的大小和空间变化。此外,基于高分辨率的透射电子显微照片(TEM),对实际的细胞周围空间尺寸的变化进行了统计分析。考虑到描绘椎板极限细胞的自然存在的周缘空间突起,可以预测细胞表面局部的应力峰值,是使用理想几何形状预测的应力峰值的五倍。占实际细胞周长几何形状的预测接近了在体外模型中触发细胞活性所需的预测。此外,基于TEM的尺寸的统计分析表明,小管间隙的宽度以及细胞过程的直径发生了显着变化,这两者都随着距细胞体距离的增加而减小。首次了解到,这项研究显示了生理几何学本身对骨骼中纳米尺度流态的影响,以及生理几何学对通过载荷诱导的流体局部传递给细胞的力大小和变化的深刻影响。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号