...
首页> 外文期刊>Journal of Biomechanics >Modelling subcortical bone in finite element analyses: A validation and sensitivity study in the macaque mandible.
【24h】

Modelling subcortical bone in finite element analyses: A validation and sensitivity study in the macaque mandible.

机译:在有限元分析中对皮质下骨建模:在猕猴下颌骨中的验证和敏感性研究。

获取原文
获取原文并翻译 | 示例
           

摘要

Finite element analysis (FEA) is a fundamental method to study stresses and strains in complex structures, with the accuracy of an FEA being reliant on a number of variables, not least the precision and complexity of the model's geometry. Techniques such as computed tomography (CT) allow general geometries to be derived relatively quickly; however, constraints on CT image resolution mean defining subcortical geometries can be problematic. In relation to the overall mechanical response of a complex structure during FEA, the consequence of variable subcortical modelling is not known. Here we test this sensitivity with a series of FE models of a macaque mandible with different subcortical geometries and comparing the FEA strain magnitudes and orientations. The validity of the FE models was tested by carrying out experimental strain measurements on the same mandible. These strain measurements matched the FE predictions, providing confidence that material properties and model geometry were suitably defined. Results of this study show that cortical bone alone is not as effective in resisting bending as it is when coupled with subcortical bone, and as such subcortical geometries must be modelled during an FEA. This study demonstrates that the fine detail of the mandibular subcortical structure can be adequately modelled as a solid when assigned an appropriate Young's modulus value, in this case ranging from 1 to 2 GPa. This is an important and encouraging result for the creation of FE models of materials where CT image resolution or poor preservation prevent the accurate modelling of subcortical bone.
机译:有限元分析(FEA)是研究复杂结构中的应力和应变的基本方法,而FEA的精度取决于许多变量,尤其是模型几何的精度和复杂性。诸如计算机断层扫描(CT)之类的技术可以使相对较快的几何形状得到快速的推导。但是,CT图像分辨率的限制意味着定义皮层下的几何形状可能会出现问题。关于有限元分析期间复杂结构的整体机械响应,可变皮层下建模的结果尚不清楚。在这里,我们用一系列具有不同皮层下几何形状的猕猴下颌骨的一系列有限元模型测试了这种敏感性,并比较了有限元分析的应变幅度和方向。通过在同一下颌骨上进行实验应变测量来测试FE模型的有效性。这些应变测量结果与有限元预测相符,从而可以确信已定义了材料属性和模型几何形状。这项研究的结果表明,单独的皮质骨在抵抗弯曲方面不如与皮质下骨结合时那样有效,因此必须在有限元分析期间对皮质下的几何形状进行建模。这项研究表明,当分配适当的杨氏模量值(在这种情况下,范围为1至2 GPa)时,可以将下颌皮层下皮质结构的精细细节适当地建模为实体。对于创建材料的有限元模型而言,这是重要且令人鼓舞的结果,其中CT图像分辨率或保存不良会阻止皮层下骨的精确建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号