...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds
【24h】

Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds

机译:仿生羟基磷灰石涂层在孔壁上改善了聚L-乳酸支架的骨整合

获取原文
获取原文并翻译 | 示例
           

摘要

Polymer-ceramic composites obtained as the result of a mineralization process hold great promise for the future of tissue engineering. Simulated body fluids (SBFs) are widely used for the mineralization of polymer scaffolds. In this work an exhaustive study with the aim of optimizing the mineralization process on a poly(L-lactic acid) (PLLA) macroporous scaffold has been performed. We observed that when an air plasma treatment is applied to the PLLA scaffold its hydroxyapatite nucleation ability is considerably improved. However, plasma treatment only allows apatite deposition on the surface of the scaffold but not in its interior. When a 5 wt % of synthetic hydroxyapatite (HAp) nanoparticles is mixed with PLLA a more abundant biomimetic hydroxyapatite layer grows inside the scaffold in SBF. The morphology, amount, and composition of the generated biomimetic hydroxyapatite layer on the pores' surface have been analyzed. Large mineralization times are harmful to pure PLLA as it rapidly degrades and its elastic compression modulus significantly decreases. Degradation is retarded in the composite scaffolds because of the faster and extensive biomimetic apatite deposition and the role of HAp to control the pH. Mineralized scaffolds, covered by an apatite layer in SBF, were implanted in osteochondral lesions performed in the medial femoral condyle of healthy sheep. We observed that the presence of biomimetic hydroxyapatite on the pore's surface of the composite scaffold produces a better integration in the subchondral bone, in comparison to bare PLLA scaffolds.
机译:通过矿化过程获得的聚合物-陶瓷复合材料对组织工程的未来具有广阔的前景。模拟体液(SBF)被广泛用于聚合物支架的矿化。在这项工作中,以优化聚(L-乳酸)(PLLA)大孔支架上的矿化过程为目的进行了详尽的研究。我们观察到,将空气等离子体处理应用于PLLA支架时,其羟基磷灰石成核能力大大提高。然而,等离子体处理仅允许磷灰石沉积在支架的表面上,但不允许在其内部。当将5 wt%的合成羟基磷灰石(HAp)纳米粒子与PLLA混合时,更丰富的仿生羟基磷灰石层会在SBF的支架内生长。分析了在孔表面上生成的仿生羟基磷灰石层的形态,数量和组成。大量的矿化时间对纯PLLA有害,因为它会迅速降解并且其弹性压缩模量会大大降低。由于生物仿生磷灰石沉积更快,更广泛,并且HAp可以控制pH,因此复合材料支架的降解受到抑制。将矿化的支架(覆盖在SBF中的磷灰石层上)植入在健康绵羊的股内侧media中进行的软骨软骨损伤中。我们观察到,与裸PLLA支架相比,仿生羟基磷灰石在复合支架孔表面上的存在可在软骨下骨中产生更好的整合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号