...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Improved resolution of 3D printed scaffolds by shrinking
【24h】

Improved resolution of 3D printed scaffolds by shrinking

机译:通过收缩提高3D打印支架的分辨率

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computermodeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermo- mechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of 80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. t; (C) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1415-1423,2015.
机译:三维打印(3DP)使用喷墨打印头选择性地沉积液体粘合剂,以逐层方式邻接粉末颗粒,从而创建计算机建模的3D对象。已经针对生物医学应用描述了两种3DP通用方​​法(直接和间接3DP)。两种方法具有竞争优势,并且都受到打印分辨率的限制。这项研究描述了通过控制收缩的网状支架来增强3DP分辨率的材料加工策略。简要地,将致孔剂预成型件印刷并注入所需的单体或聚合物溶液。固化或聚合后,浸出致孔剂,并通过控制干燥使聚合物收缩。进行热处理以保持尺寸抵抗膨胀力。这项研究的主要目的是确定聚合物含量和后处理对支架的尺寸,微观结构和热机械性能的影响。对于聚乙二醇二丙烯酸酯(PEG-DA),减少的聚合物含量与更大的收缩率相对应,在20%体积%PEG-DA的情况下最大收缩率为80 vol%。二次热处理保留了支架的微结构和新尺寸,即使将经过热处理的支架浸入水中也是如此。为了证明收缩可预测性,印刷,加工和装配了具有互锁的正负特征的3D组件。这种材料加工策略提供了一种替代方法,可增强3D支架对于多种聚合物的分辨率,而无需优化粘合剂与粉末的相互作用物理特性来印刷每种材料组合。 t; (C)2014 Wiley Periodicals,Inc.J Biomed Mater Res Part B:Appl Biomater,103B:1415-1423,2015。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号