...
首页> 外文期刊>Journal of Computational Physics >Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry
【24h】

Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry

机译:航天器再入时三维复杂流的气动力学数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The gas-kinetic numerical algorithm solving the Boltzmann model equation is extended and developed to study the three-dimensional hypersonic flows of spacecraft re-entry into the atmosphere in perfect gas. In this study, the simplified velocity distribution function equation for various flow regimes is presented on the basis of the kinetic Boltzmann-Shakhov model. The discrete velocity ordinate technique and numerical quadrature methods, Such as the Causs quadratUre formulas with the weight function 2/pi(1/2) exp(-V-2) and the Gauss-Legendre numerical quadrature rule, are Studied to resolve the barrier in Simulating complex flows from low Mach numbers to hypersonic problems. Specially, the gas-kinetic finite-difference scheme is constructed for the Computation of three-dimensional flow problems, which directly captures the time evolution of the molecular velocity distribution function. The gas-kinetic boundary conditions and numerical procedures are studied and implemented by directly acting on the velocity distribution function. The HPF(high performance fortran) parallel implementation technique for the gas-kinetic numerical method is developed and applied to study the hypersonic flows around three-dimensional complex bodies. The main purpose of the current research is to provide a way to extend the gaskinetic numerical algorithm to the flow computation of three-dimensional complex hypersonic problems with high Mach numbers. To verify the current method and simulate gas transport phenomena covering various flow regimes, the three-dimensional hypersonic flows around sphere and spacecraft shape with different Knudsen numbers and Mach numbers are studied by HPF parallel computing. Excellent results have been obtained for all examples computed. (C) 2008 Elsevier Inc. All rights reserved.
机译:扩展并发展了求解玻尔兹曼模型方程的气体动力学数值算法,以研究航天器在理想气体中重新进入大气的三维高超音速流动。在这项研究中,在动力学Boltzmann-Shakhov模型的基础上,提出了用于各种流动状态的简化速度分布函数方程。研究了离散速度纵坐标技术和数值正交方法,例如权函数为2 / pi(1/2)exp(-V-​​2)的Causs quadratUre公式和Gauss-Legendre数值正交规则,以解决障碍模拟从低马赫数到高超声速问题的复杂流动。特别地,构造了用于三维流动问题计算的气体动力学有限差分方案,该方案直接捕获了分子速度分布函数的时间演化。通过直接作用于速度分布函数来研究和实现气体动力学边界条件和数值程序。开发了用于气体动力学数值方法的HPF(高性能fortran)并行实现技术,并将其应用于研究三维复杂物体周围的高超声速流动。当前研究的主要目的是提供一种方法,将气体动力学数值算法扩展到具有高马赫数的三维复杂高超声速问题的流动计算。为了验证当前的方法并模拟涵盖各种流态的气体传输现象,通过HPF并行计算研究了具有不同Knudsen数和Mach数的球形和航天器形状周围的三维高超音速流。对于所有计算的实例均获得了优异的结果。 (C)2008 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号