首页> 外文期刊>Journal of Fluids and Structures >Experimental determination of unsteady aerodynamic coefficients and flutter behavior of a rigid wing
【24h】

Experimental determination of unsteady aerodynamic coefficients and flutter behavior of a rigid wing

机译:刚性翼的非定常空气动力学系数和颤振特性的实验确定

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, unsteady aerodynamic forces acting on a three-dimensional wing and its aeroelastic behavior are determined experimentally using a novel semi-experimental method. Towards this end, a rigid wing specimen was fabricated and tested in a low speed, subsonic wind tunnel with two motion sensors for plunging and pitching. Time history samples of the wing motion were obtained at a single air speed and processed using the "Aerodynamics is Aeroelasticity Minus Structure" (AAEMS) system identification method to generate a reduced-order aerodynamic model in discrete-time, state-space format. Coupling the aerodynamic model with the structural model, obtained from the ground vibration test (GVT), results in a reduced-order aeroelastic model that can be analyzed with a variable dynamic pressure. Despite the absence of pressure measurements the model yields a good prediction of aeroelastic behavior, especially for lightly damped modes and for a wide range of dynamic pressures, including the flutter point. It is shown that when the dynamic pressure is at 29.6% of the critical flutter value the method estimates the flutter speed with less than 2% error. However, as the reference dynamic pressure is lowered (relative to the flutter dynamic pressure) the flutter prediction becomes less accurate due to the lack of pressure data. The experimental procedure outlined in this paper can be useful when predicting flutter based on data obtained at sub-critical dynamic pressures.
机译:本文采用新型的半实验方法,通过实验确定了作用在三维机翼上的非稳态空气动力及其气动弹性行为。为此,制造了一个刚性机翼样品,并在低速亚音速风洞中进行了测试,该风洞带有两个用于俯冲和俯仰的运动传感器。在单一风速下获得机翼运动的时程样本,并使用“空气动力学是空气弹性减结构”(AAEMS)系统识别方法进行处理,以离散时间,状态空间格式生成降阶空气动力学模型。将空气动力学模型与从地面振动测试(GVT)获得的结构模型耦合,可以生成降阶的空气弹性模型,可以用可变的动态压力进行分析。尽管没有压力测量,但是该模型仍可以很好地预测气动弹性行为,尤其是对于轻阻尼模式和大范围的动态压力(包括颤动点)。结果表明,当动压力为颤振临界值的29.6%时,该方法估计的颤振速度误差小于2%。然而,随着参考动压降低(相对于颤动压),由于缺乏压力数据,颤动预测变得不那么准确。本文概述的实验程序在基于亚临界动压力下获得的数据预测颤动时可能会很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号