...
首页> 外文期刊>Journal of genetics >Looking beyond PsTOL1: marker development for two novel rice genes showing differential expression in P deficient conditions
【24h】

Looking beyond PsTOL1: marker development for two novel rice genes showing differential expression in P deficient conditions

机译:超越PsTOL1:两个新的水稻基因的标记发育在缺磷条件下表现出差异表达

获取原文
获取原文并翻译 | 示例
           

摘要

With the availability of the full genome sequence of rice, identification and localization of genes related to stress tolerance has become feasible. Using the rice genome information, better alleles of these genes can be identified in the germplasm, which will be useful for breeding. Insufficient plant-available soil phosphorus (P) is a major constraint for rice production and is apparent under conditions which are commonly characterized by infertile, highly acidic and P fixing soils. A few genes such as PHR1, PHR2, OsPTF1, OsSPX1, OsSPX2, OsSPX3, OsIPS1 and OsIPS2 (Hou et al. 2005; Wang et al. 2009) have been reported in P deficiency signalling, but whether they function similarly in different rice genotypes in response to low P is not clear. Only one major quantitative trait loci (QTL) phosphorus uptake1 (Pup1) (Wissuwa et al. 1998) has been identified in rice for better uptake of P under deficiency conditions explaining nearly 30% variation for P uptake and has now been narrowed down to gene level (PsTOL1) (Gamuyao et al. 2012). Molecular genetic understanding of P deficiency tolerance is so far restricted to two genes, i.e. PsTOL1 and PTF1. Phosphorus deficiency tolerance being a complex quantitative trait, where P uptake is only one of the components, it is likely that there would be other molecular mechanisms, loci and genes that contribute to tolerance. Thus, there is a need to generate and evaluate novel molecular breeding resources to capture different molecular mechanisms for P deficiency tolerance. In this study, for the first time, we report the use of rice genotypes adapted to acidic soils of eastern and northeastern India for generating novel molecular tools in terms of characterized germplasm and gene-based markers. These resources will be helpful for understanding molecular mechanism underlying adaptability and performance under acidic soils.
机译:随着水稻全基因组序列的获得,与胁迫耐受性相关的基因的鉴定和定位已变得可行。利用水稻基因组信息,可以在种质中鉴定出这些基因的更好等位基因,这对育种很有用。植物可利用的土壤磷(P)不足是水稻生产的主要限制因素,并且在通常以不育,高酸性和固磷土壤为特征的条件下很明显。已经报道了P缺乏信号传导中的一些基因,例如PHR1,PHR2,OsPTF1,OsSPX1,OsSPX2,OsSPX3,OsIPS1和OsIPS2(Hou等2005; Wang等2009),但是它们是否在不同的水稻基因型中具有相似的功能应对低P尚不清楚。水稻中仅发现了一个主要的数量性状基因位点(QTL)磷吸收量1(Pup1)(Wissuwa et al。1998),可以更好地吸收缺磷条件下的磷,这解释了近30%的磷吸收变化,现已缩小为基因(PsTOL1)(Gamuyao等,2012)。迄今为止,对磷缺乏耐受性的分子遗传学理解仅限于两个基因,即PsTOL1和PTF1。磷缺乏耐受性是一个复杂的定量性状,其中磷的吸收只是其中的一个组成部分,很可能还有其他分子机制,基因座和基因对耐受性有贡献。因此,需要产生和评估新颖的分子育种资源以捕获对磷缺乏症耐受性的不同分子机制。在本研究中,我们首次报道了利用适于印度东部和东北部酸性土壤的水稻基因型,以特征种质和基于基因的标记物产生新型分子工具。这些资源将有助于理解酸性土壤下适应性和性能的分子机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号