...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions
【24h】

Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions

机译:在不同地形位置将土壤有机质动力学与侵蚀引起的陆地固碳联系起来

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, the potential for terrestrial carbon (C) sequestration by soil erosion and deposition has received increased interest. Erosion and deposition constitute a sink for atmospheric carbon dioxide relative to a preerosional state or a noneroding scenario, if the posterosion watershed C balance is increased due to (1) partial replacement of eroded C by new photosynthate in the eroded site; and (2) preservation from decomposition of at least some eroded soil organic carbon (SOC) arriving in depositional settings. Little is known, however, about differences in C dynamics at different erosional and depositional landform positions within the same eroding system. We determined the contribution of different landform positions to erosion-induced terrestrial C sequestration by measuring rates of net primary productivity (NPP), replacement of eroded C, and decomposition of organic matter (OM) at four categorically different landform positions within a naturally eroding toposequence in northern California. We found that eroded C is replaced by NPP 15 times over in the summit of the site studied and 5 times over in the slope. Profile-averaged, long-term rate constant for SOM decomposition was 2 to 14 times slower in the depositional settings compared with that in eroding slopes. As a result, the inventory of C in the depositional settings was 2 to 3 times larger than that of the eroding positions. Owing to both C replacement at eroding sites and reduced rates of OM decomposition in depositional sites, soil erosion constitutes a C sink from the atmosphere at our study site.
机译:近来,通过土壤侵蚀和沉积而螯合陆地碳(C)的潜力受到了越来越多的关注。如果由于以下原因而增加了后流域的碳平衡,则侵蚀和沉积构成相对于侵蚀前状态或无腐蚀情形的大气二氧化碳汇:(1)在侵蚀部位用新的光合产物部分替代侵蚀的C; (2)防止沉积环境中至少一些侵蚀的土壤有机碳(SOC)分解。然而,关于同一侵蚀系统内不同侵蚀和沉积地形位置的碳动力学差异知之甚少。我们通过测量自然侵蚀后序中四个类别完全不同的地形位置的净初级生产力(NPP),被侵蚀的C的替换以及有机物的分解(OM)的速率,确定了不同地形位置对侵蚀诱导的陆地C固存的贡献。在加利福尼亚北部。我们发现,在研究地点的山顶上,被侵蚀的碳被NPP替代了15倍,而在斜坡上被替代了5倍。与沉积坡度相比,沉积环境中剖面平均的SOM分解的长期速率常数要慢2至14倍。结果,在沉积环境中C的存量比腐蚀位置大2到3倍。由于侵蚀地点的碳置换和沉积地点的OM分解速率降低,土壤侵蚀构成了我们研究地点大气中的C汇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号