...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Hydrological impact of the potential future vegetation response to climate changes projected by 8 GCMs
【24h】

Hydrological impact of the potential future vegetation response to climate changes projected by 8 GCMs

机译:8个GCM预测未来潜在植被对气候变化的水文影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study uses offline simulations with a land surface model to explore how the future response of potential vegetation to elevated CO2 and attendant climate changes feeds back to influence surface hydrological processes. Climate changes are those projected by eight General Circulation Models (GCMs) under the SRESA1B, and the potential natural vegetation structure corresponding to the Preindustrial control and SRESA1B 2100 climate of the 8 GCMs are simulated by a dynamic global vegetation model integrated to equilibrium. For climate change forcing from each GCM, comparisons are made among three surface hydrology simulations using CLM3.0 driven with different combinations of climate forcing, atmospheric CO2 concentration, and potential natural vegetation. These simulations are designed to separate the effect of structural vegetation feedback from the combined influence of climate and CO2 changes. With the exception of the HadCM scenario, all other GCM scenarios broadly agree on the spatial patterns of structural vegetation feedbacks on surface temperature and surface water budget, although the response of soil moisture varies considerably among the GCM scenarios especially in the tropics. With the HadCM excluded, averages over the seven GCM scenarios indicate that the CO2-induced warming in winter is stronger than in summer in the northern mid and high latitudes, and structural vegetation feedback enhances the winter warming and reduces the summer warming over a large portion of these regions; the global hydrological cycle is expected to accelerate in a warmer future climate, while the structural vegetation feedback further increases evapotranspiration in a major portion of the globe, including parts of South America, tropical Africa, Southeast Asia, and regions north of approximately 45°N, suggesting that vegetation feedback could further accelerate the hydrological cycle. Averaged over the globe, this increase in evapotranspiration due to structural vegetation feedback is equivalent to 78% of that due to climate and CO2 changes. When changes in vegetation structure are not considered, the 7-model average response of soil moisture to climate and CO2 changes is characterized by wetter soil conditions in the northern high latitudes and parts of the midlatitudes. Structural vegetation feedback, however, causes strong midlatitude dryness both in the winter and in the summer. The impact of vegetation changes corresponding to the HadCM-projected climate changes is markedly different, being either more extreme or in a different direction than that corresponding to the other GCMs examined. Our results are constrained by the lack of consideration for human land use changes and vegetation feedback to climate, as well as the uncertainty related to the highly disputed physiological response of ecosystems to elevated CO2. Nevertheless, this study demonstrates that climate- and CO2-induced changes in potential vegetation structure substantially influence the surface hydrological processes, thus emphasizing the importance of including vegetation feedback in future climate change predictions.
机译:这项研究使用具有陆地表面模型的离线模拟来探索潜在植被对二氧化碳升高和随之而来的气候变化的未来反应如何反馈影响地表水文过程。气候变化是由SRESA1B下的八个通用循环模型(GCM)预测的,而通过集成到平衡的动态全球植被模型模拟了与这八个GCM的工业前控制和SRESA1B 2100气候相对应的潜在自然植被结构。对于来自每个GCM的气候变化强迫,在使用CLM3.0并以气候强迫,大气CO2浓度和潜在自然植被的不同组合驱动的三个地表水文模拟之间进行了比较。这些模拟旨在将结构性植被反馈的影响与气候和CO2变化的综合影响分开。除了HadCM情景外,所有其他GCM情景都大致同意结构植被对地表温度和地表水收支的反馈的空间格局,尽管在GCM情景中,特别是在热带地区,土壤水分的响应差异很大。如果不包括HadCM,则七个GCM情景的平均值表明,北部中高纬度地区冬季由CO2引起的变暖要强于夏季,结构性植被反馈增强了冬季变暖,并在很大程度上减少了夏季变暖。在这些地区中;预计全球水文循环将在未来更暖的气候下加速,而结构性植被反馈将进一步增加全球大部分地区的蒸散量,包括南美部分地区,热带非洲,东南亚和北约45°N的地区,表明植被反馈可以进一步加快水文循环。在全球范围内,由于结构性植被的反馈,蒸散量的增加相当于气候和二氧化碳变化引起的蒸散量的78%。当不考虑植被结构变化时,北部高纬度地区和中纬度部分地区土壤湿度较高,这是土壤湿度对气候和二氧化碳变化的7种模式平均响应的特征。但是,结构性植被反馈会在冬季和夏季造成中纬度强烈干燥。与HadCM预测的气候变化相对应的植被变化影响显着不同,其变化远比与其他GCM所对应的变化更为极端或方向不同。由于缺乏对人类土地利用变化和植被对气候的反馈的考虑,以及与生态系统对二氧化碳升高产生高度争议的生理反应有关的不确定性,我们的结果受到了限制。然而,这项研究表明,气候和二氧化碳引起的潜在植被结构变化极大地影响了地表水文过程,因此强调了在未来气候变化预测中纳入植被反馈的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号