...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Impact of mesoscale ocean currents on sea ice in high-resolution Arctic ice and ocean simulations
【24h】

Impact of mesoscale ocean currents on sea ice in high-resolution Arctic ice and ocean simulations

机译:高分辨率北极冰和海洋模拟中尺度海流对海冰的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A high-resolution sea ice model is designed for simulating the Arctic. The grid resolution is approx 18 km, and the domain contains the main Arctic Ocean, Nordic Seas, Canadian Archipelago, and the subpolar North Atlantic. The model is based on a widely used dynamic and thermodynamic model with more efficient numerics. The oceanic forcing is from an Arctic Ocean model with the same horizontal resolution as the ice model and 30 levels. The atmospheric forcing is from 3-day average 1990-1994 European Centre for Medium-Range Weather Forecasts operational data. Results from the ice model are compared against satellite passive-microwave observations and drifting buoys. The model realistically simulates ice tongues and eddies in the Greenland Sea. The mesoscale ocean eddies along the East Greenland Current (EGC) are demonstrated to be responsible for the presence of ice eddies and tongues out of the Greenland Sea ice edge. Large shear and divergence associated with the mesoscale ice eddies and strong ice drift, such as the one above the EGC, result in thinner and less compact ice. The mesoscale ocean eddies along the Alaskan Chukchi shelf break, the Northwind Ridge, and the Alpha-Mendeleyev Ridge are major contributors to mesoscale reduction of ice concentration, in addition to atmospheric storms which usually lead to a broad-scale reduction of ice concentration. The existence of mesoscale ocean eddies greatly increases nonuniformity of ice motion, which means stronger ice deformation and more open water. An eddy-resolving coupled ice-ocean model is highly recommended to adequately simulate the small but important percentage of open water in the Arctic pack ice, which can significantly change the heat fluxes from ocean to atmosphere and affect the global climate.
机译:设计了高分辨率的海冰模型来模拟北极。网格分辨率约为18 km,该域包含主要的北冰洋,北欧海,加拿大群岛和亚极北大西洋。该模型基于具有更有效数值的广泛使用的动态和热力学模型。海洋强迫来自北冰洋模型,具有与冰模型相同的水平分辨率和30个水平。大气强迫来自1990-1994年欧洲中距离天气预报中心的3天平均值。将冰模型的结果与卫星被动微波观测和浮标进行比较。该模型现实地模拟了格陵兰海的冰舌和漩涡。沿格陵兰东部流(EGC)的中尺度海洋涡流被证明是格陵兰海冰缘之外存在冰涡和舌头的原因。与中等规模的冰涡相关的大剪切和发散以及强烈的冰漂移(例如EGC上方的冰),导致了更薄,更不致密的冰。沿着阿拉斯加楚科奇陆架断裂,北风岭和阿尔法-门捷列夫岭的中尺度海洋涡流是导致中冰浓度降低的主要因素,此外,大气风暴通常会导致冰浓度的大规模降低。中尺度海洋涡旋的存在大大增加了冰运动的不均匀性,这意味着更强的冰变形和更多的开阔水域。强烈建议使用涡旋分辨冰海模型来充分模拟北极浮冰中少量但重要的开放水域,这会显着改变从海洋到大气的热通量并影响全球气候。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号