...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation
【24h】

Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation

机译:断层可塑性和地震破裂动力学:2.流体饱和度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We present an analysis of inelastic off-fault response in fluid-saturated material during earthquake shear rupture. The analysis is conducted for 2-D plane strain deformation using an explicit dynamic finite element formulation. Along the fault, linear slip-weakening behavior is specified, and the off-fault material is described using an elastic-plastic description of the Drucker-Prager form, which characterizes the brittle behavior of rocks under compressive stress when the primary mode of inelastic deformation is frictional sliding of fissure surfaces, microcracking and granular flow. In this part (part 1), pore pressure changes were neglected in materials bordering the fault. In part 2, we more fully address the effects of fluid saturation. During the rapid stressing by a propagating rupture, the associated undrained response of the surrounding fluid-saturated material may be either strengthened or weakened against inelastic deformation. We consider poroelastoplastic materials with and without plastic dilation. During nondilatant undrained response near a propagating rupture, large increases in pore pressure on the compressional side of the fault decrease the effective normal stress and weaken the material, and decreases in pore pressure on the extensional side strengthen the material. Positive plastic dilatancy reduces pore pressure, universally strengthening the material. Dilatantly strengthened undrained deformation has a diffusive instability on a long enough timescale when the underlying drained deformation is unstable. Neglecting this instability on the short timescale of plastic straining, we show that undrained deformation is notably more resistant to shear localization than predicted by neglect of pore pressure changes.
机译:我们对地震剪切断裂过程中流体饱和材料的非弹性断层响应进行了分析。使用显式动态有限元公式对二维平面应变变形进行分析。沿断层确定线性滑弱行为,并使用Drucker-Prager形式的弹塑性描述描述断层材料,该特征描述了在非弹性变形的主要模式下在压缩应力下岩石的脆性行为。是裂缝表面的摩擦滑动,微裂纹和颗粒流。在这一部分(第1部分)中,与断层接壤的材料的孔隙压力变化被忽略了。在第2部分中,我们将更全面地讨论流体饱和的影响。在通过传播破裂而迅速施加应力的过程中,周围的流体饱和材料的相关不排水响应可能会增强或减弱,以抵抗非弹性变形。我们考虑有或没有塑性膨胀的多孔弹塑性材料。在扩展的破裂附近发生非膨胀的不排水响应时,断层压缩侧孔隙压力的大幅度增加会降低有效法向应力并削弱材料,而延伸侧孔隙压力的降​​低会增强材料。正塑性膨胀率降低了孔隙压力,普遍增强了材料。当潜在的排水变形不稳定时,漫长的不排水变形在足够长的时间尺度上具有扩散不稳定性。在塑性应变的短时间内忽略了这种不稳定性,我们表明,与忽略孔隙压力变化所预测的相比,不排水的变形对剪切局部化的抵抗力要强得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号