首页> 外文期刊>Journal of Materials Engineering and Performance >Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper
【24h】

Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

机译:OFHC铜循环通道冲模压缩过程中的电导率,热稳定性和晶格缺陷演变

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.
机译:在室温下,无氧高电导率(OFHC)铜样品通过循环通道模头压缩(CCDC)技术严重塑性变形,有效塑性应变为7.2。研究了应变对电导率变化,形变储能演化和再结晶起始温度的影响。使用三种不同的方法对变形引起的晶格缺陷进行量化,包括使用Williamson-Hall技术的X射线衍射轮廓分析,基于存储能量的方法和基于电阻率的技术。与其他严重的塑性变形技术相比,经过3个CCDC循环后,电导率从100.6%下降到96.6%IACS。注意到重结晶开始和峰值温度的降低,而在CCDC的三个循环后,存储的能量在0.95-1.1J / g左右增加并饱和。尽管随着应变的增加观察到重结晶活化能的下降,但仍显示出优异的热稳定性,这归因于CCDC工艺原理。证实了在CCDC处理的OFHC铜中观察到的低活化能对晶界特征和晶格缺陷分布的协同影响。估计的缺陷浓度表明,位错密度和空位随应变而持续增加。发现变形引起的空位浓度明显高于归因于CCDC期间静水应力状态的平衡空位浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号