【24h】

An increased F-2-laser damage in 'wet' silica glass due to atomic hydrogen: A new hydrogen-related E'-center

机译:原子氢导致“湿”石英玻璃中F-2激光损伤的增加:一个与氢有关的新E'中心

获取原文
获取原文并翻译 | 示例
           

摘要

A dramatic increase of F-2-laser induced room temperature-stable point defects in 'wet' synthetic silica glass occurs when irradiation temperature is lowered to 80 K. Contrary to the predictions based on the established models of defect processes, a large part of defects induced at 80 K remains stable also at the room temperature. The intensities of the laser-induced optical absorption bands of the non-bridging oxygen hole centers (2.0 and 4.8 eV) and E'-centers (5.8 eV) are comparable to those created by neutron irradiation (10(18) n/cm(2)). A growth of infrared absorption peak at 2237 cm(-1) indicates creation of silicon hydride (SiH) groups. A study of irradiation dose dependences and irradiation efficiency at intermediate temperatures (160 K) suggests a novel radiation damage mechanism by insertion of atomic hydrogen in electronically excited Si-O bond. EPR spectra show E'(gamma)-like centers overlapped by a new type of E'-centers, characterized by a hyperfine splitting of 0.08 mT of the low-field peak in the derivative spectrum. The new E'-center is assigned to a silicon dangling bond, with the Si atom bonded by two bridging oxygens and an OH group ('E'(OH)'). Similar centers have been previously observed on SiO2 surfaces. (c) 2006 Elsevier B.V. All rights reserved.
机译:当辐照温度降低到80 K时,“湿”合成石英玻璃中的F-2-激光诱导的室温稳定点缺陷急剧增加。与基于已建立的缺陷过程模型的预测相反,很大一部分是在80 K时引起的缺陷在室温下也保持稳定。非桥接氧空穴中心(2.0和4.8 eV)和E'中心(5.8 eV)的激光诱导的光吸收带的强度与中子辐照产生的光吸收带的强度(10(18)n / cm( 2))。红外吸收峰在2237 cm(-1)处的增长表明形成了氢化硅(SiH)基团。对辐照剂量依赖性和中温(160 K)辐照效率的研究表明,通过在电子激发的Si-O键中插入原子氢,可以产生一种新颖的辐照损伤机理。 EPR光谱显示类似E'(γ)的中心被新型E'-中心重叠,其特征在于导数谱中低场峰0.08 mT的超精细分裂。新的E'中心被分配给一个硅悬键,而Si原子则被两个桥连的氧和一个OH基团('E'(OH)')键合。先前已在SiO2表面观察到类似的中心。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号