首页> 外文期刊>Journal of natural gas science and engineering >Hydrogen production from methane reforming: Thermodynamic assessment and autothermal reactor design
【24h】

Hydrogen production from methane reforming: Thermodynamic assessment and autothermal reactor design

机译:甲烷重整制氢:热力学评估和自热反应器设计

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, a comparative thermodynamic analysis of methane reforming reactions is conducted using an in-house code. Equilibrium compositions are calculated by two distinct methods: (1) evaluation of equilibrium constants and (2) Lagrange multipliers. Both methods result in systems of non-linear algebraic equations, solved numerically using the Scilab (www.scilab.org) function "fsolve". Effects of temperature, pressure, steam to carbon ratio (S/C) (steam reforming), CH4/CO2 ratio (dry reforming), oxygen to carbon ratio (O/C) (oxidative reforming) and steam to oxygen to carbon ratio (S/O/C) (autothermal reforming) on the reaction products are evaluated. Comparisons between experimental and simulated data, published in the literature, are used to validate the simulated results. We also present and validate a small-scale reactor model for the autothermal reforming of methane (ATR). Using this model, the reactor design is performed and key operational parameters are investigated in order to increase both H2 yield and H2/CO selectivity. The reactor model considers a mass balance equation for each component, and the set of ordinary differential equations is integrated using the Scilab function "ode". This ATR reactor model is able to describe the influence of temperature on methane conversion profiles, aiming to maximize hydrogen production. The experimental results and the model presented good agreement for methane conversion in all studied temperature range. Through simulated data of methane conversions, hydrogen yields and H2/CO selectivity, it is observed that the best reaction temperature to maximize the yield of hydrogen for the ATR reaction is situated between 723 and 773 K. Inside these bounds, 50% of methane is converted into products. Also, the experimental data indicates that the Ni catalyst activity is not compromised.
机译:在这项研究中,使用内部代码对甲烷重整反应进行了比较热力学分析。平衡组成是通过两种不同的方法计算的:(1)平衡常数的评估和(2)拉格朗日乘数。两种方法都产生非线性代数方程组,并使用Scilab(www.scilab.org)函数“ fsolve”以数值方式求解。温度,压力,蒸汽碳比(S / C)(蒸汽重整),CH4 / CO2比(干重整),氧碳比(O / C)(氧化重整)和水汽氧碳比(评估反应产物上的S / O / C)(自热重整)。文献中发表的实验数据和模拟数据之间的比较用于验证模拟结果。我们还提出并验证了甲烷自热重整(ATR)的小型反应器模型。使用该模型进行反应器设计,并研究关键操作参数,以提高H2收率和H2 / CO选择性。反应堆模型考虑每个组分的质量平衡方程,并使用Scilab函数“ ode”对一组常微分方程进行积分。该ATR反应器模型能够描述温度对甲烷转化曲线的影响,旨在最大程度地提高氢气产量。在所有研究温度范围内,实验结果和模型均表明甲烷转化率良好。通过甲烷转化率,氢产率和H2 / CO选择性的模拟数据,可以观察到使ATR反应最大程度地提高氢产率的最佳反应温度为723-773K。在这些范围内,有50%的甲烷为转换为产品。而且,实验数据表明Ni催化剂活性没有受到损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号