...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Gas temperature measurements in a microwave plasma by optical emission spectroscopy under single-wall carbon nanotube growth conditions
【24h】

Gas temperature measurements in a microwave plasma by optical emission spectroscopy under single-wall carbon nanotube growth conditions

机译:在单壁碳纳米管生长条件下通过光发射光谱法测量微波等离子体中的气体温度

获取原文
获取原文并翻译 | 示例
           

摘要

Plasma gas temperatures were measured via in situ optical emission spectroscopy in a microwave CH4-H-2 plasma under carbon nanotube (CNT) growth conditions. Gas temperature is an important parameter in controlling and optimizing CNT growth. The temperature has a significant impact on chemical kinetic rates, species concentrations and CNT growth rates on the substrate. H-2 rotational temperatures were determined from the Q-branch spectrum of the d(3) Pi(u)(0).a3 Sigma(+)(g) (0) transition. N-2 rotational and vibrational temperatures were measured by fitting rovibrational bands from the N2 emission spectrum of the C-3 Pi(u) -> B-3 Pi(g) transition. The N-2 rotational temperature, which is assumed to be approximately equal to the translational gas temperature, increases with an increase in input microwave plasma power and substrate temperature. The measured H-2 rotational temperatures were not in agreement with the measured N2 rotational temperatures under the CNT growth conditions in this study. The measured N2 rotational temperatures compared with the H2 rotational temperatures suggest the partial equilibration of upper excited state due to higher, 10 Torr, operating pressure. Methane addition in the hydrogen plasma increases the gas temperature slightly for methane concentrations higher than 10% in the feed gas.
机译:在碳纳米管(CNT)生长条件下,通过微波CH4-H-2等离子体中的原位光发射光谱法测量等离子体气体的温度。气体温度是控制和优化CNT生长的重要参数。温度对基材上的化学动力学速率,物质浓度和CNT生长速率有重大影响。从d(3)Pi(u)(0).a3 Sigma(+)(g)(0)跃迁的Q分支谱确定H-2 旋转温度。通过从C-3 Pi(u)-> B-3 Pi(g)跃迁的N2发射光谱拟合旋转带,测量N-2旋转和振动温度。 N-2旋转温度(假定近似等于平移气体温度)随着输入微波等离子体功率和基板温度的升高而升高。在这项研究中,测量的H-2旋转温度与在CNT生长条件下测量的N2旋转温度不一致。与H2旋转温度相比,测得的N2旋转温度表明由于较高的10 Torr操作压力,上激发态部分平衡。当进料气中的甲烷浓度高于10%时,在氢气等离子体中添加甲烷会稍微提高气体温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号