...
首页> 外文期刊>Journal of Petroleum Science & Engineering >Cross-hole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer
【24h】

Cross-hole electromagnetic and seismic modeling for CO2 detection and monitoring in a saline aquifer

机译:用于盐水层中CO2检测和监测的跨孔电磁和地震建模

获取原文
获取原文并翻译 | 示例
           

摘要

The injection of CO2 in saline aquifers and depleted hydrocarbon wells is one solution to avoid the emission of that greenhouse gas to the atmosphere. Carbon taxes can be avoided if geological sequestration can efficiently be performed from technical and economic perspectives. For this purpose, we present a combined rock-physics methodology of electromagnetic (EM) and seismic wave propagation for the detection and monitoring of CO2 in crosswell experiments. First, we obtain the electrical conductivity and seismic velocities as a function of saturation, porosity, permeability and clay content, based on the CRIM and White models, respectively. Then, we obtain a conductivity-velocity relation. This type of relations is useful when some rock properties can be more easily measured than other properties. Finally, we compute crosswell EM and seismic profiles using direct modeling techniques. P- and S-wave attenuation is included in the seismic simulation by means of White's mesoscopic theory. The modeling methodology is useful to perform sensitivity analyses and it is the basis for performing traveltime EM and seismic tomography and obtain reliable estimations of the saturation of carbon dioxide. In both cases, it is essential to correctly pick the first arrivals, particularly in the EM case where diffusion wavelength is large compared to the source-receiver distance. The methodology is applied to CO2 injection in a sandstone aquifer with shale intrusions, embedded in a shale formation. The EM traveltimes are smaller after the injection due to the higher resistivity caused by the presence of carbon dioxide, while the effect is opposite in the seismic case, where water replaced by gas decreases the seismic velocity.
机译:向盐水层和枯竭的碳氢化合物井中注入二氧化碳是一种避免温室气体向大气排放的解决方案。如果可以从技术和经济角度有效地进行地质封存,则可以避免碳税。为此,我们提出了电磁(EM)和地震波传播的组合岩石物理学方法,用于在井间实验中检测和监测CO2。首先,我们分别基于CRIM模型和White模型,获得了电导率和地震速度与饱和度,孔隙率,渗透率和黏土含量的关系。然后,我们获得了电导率-速度关系。当某些岩石特性比其他特性更容易测量时,这种类型的关系很有用。最后,我们使用直接建模技术计算井间电磁和地震剖面。根据怀特的介观理论,地震模拟中包括了P波和S波的衰减。该建模方法学对进行敏感性分析非常有用,它是进行旅行时间EM和地震层析成像以及获得二氧化碳饱和度可靠估计的基础。在这两种情况下,正确选择初次到达都是至关重要的,特别是在EM情况下,与源-接收器距离相比,扩散波长大。该方法适用于在页岩地层中埋藏有页岩侵入的砂岩含水层中注入二氧化碳。由于二氧化碳的存在会导致较高的电阻率,因此注入后的EM传播时间更短,而在地震情况下效果相反,在地震情况下,用天然气代替水会降低地震速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号