首页> 外文期刊>Journal of Sound and Vibration >Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping
【24h】

Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping

机译:不间断和加速的振动疲劳测试,同时监测固有频率和阻尼

获取原文
获取原文并翻译 | 示例
       

摘要

A mechanical systems modal parameters change when fatigue loading is applied to the system. In order to perform an accelerated vibration-based fatigue test these changes must be taken into account in order to maintain constant-stress loading. This paper presents an improved accelerated fatigue-testing methodology based on the dynamic response of the test specimen to the harmonic excitation in the near-resonant area with simultaneous monitoring of the modal parameters. The measurements of the phase angle and the stress amplitude in the fatigue zone are used for the real-time adjustment of the excitation signal according to the changes in the specimens modal parameters. The presented methodology ensures a constant load level throughout the fatigue process until the final failure occurs. With the proposed testing methodology it is possible to obtain a S-N point of the Woehler curve relatively quickly and to simultaneously monitor the changes of the specimens natural frequency and damping loss factor. The presented methodology with real-time control is verified on an aluminum Y-shaped specimen (10 ~6 load cycles are achieved in 21 min) and is applicable to a specimen with arbitrary geometry. Besides the faster completion of the fatigue test the methodology can be adopted for the validation of the vibrational fatigue analysis.
机译:当系统施加疲劳载荷时,机械系统的模态参数会发生变化。为了进行基于振动的加速疲劳测试,必须考虑这些变化,以保持恒定的应力负载。本文提出了一种改进的加速疲劳测试方法,该方法基于试样对近共振区域中谐波激励的动态响应,同时监测模态参数。根据样品模态参数的变化,将疲劳区中的相角和应力幅值的测量值用于激励信号的实时调整。所提出的方法可确保在整个疲劳过程中保持恒定的载荷水平,直到发生最终故障为止。利用所提出的测试方法,可以相对较快地获得Woehler曲线的S-N点,并且可以同时监测样品的固有频率和阻尼损耗因数的变化。本文提出的具有实时控制的方法在铝制Y形试样上进行了验证(在21分钟内达到10〜6个载荷循环),适用于具有任意几何形状的试样。除了可以更快地完成疲劳测试之外,还可以采用该方法来验证振动疲劳分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号