...
首页> 外文期刊>Biomaterials >3D bioprinting of neural stern cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair
【24h】

3D bioprinting of neural stern cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair

机译:充满神经干细胞的热响应性可生物降解聚氨酯水凝胶的3D生物打印及其在中枢神经系统修复中的潜力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The 3D bioprinting technology serves as a powerful tool for building tissue in the field of tissue engineering. Traditional 3D printing methods involve the use of heat, toxic organic solvents, or toxic photoinitiators for fabrication of synthetic scaffolds. In this study, two thermoresponsive water-based biodegradable polyurethane dispersions (PU1 and PU2) were synthesized which may form gel near 37 degrees C without any crosslinker. The stiffness of the hydrogel could be easily fine-tuned by the solid content of the dispersion. Neural stem cells (NSCs) were embedded into the polyurethane dispersions before gelation. The dispersions containing NSCs were subsequently printed and maintained at 37 degrees C. The NSCs in 25-30% PU2 hydrogels (similar to 680-2400 Pa) had excellent proliferation and differentiation but not in 25 -30% PU1 hydrogels. Moreover, NSC-laden 25-30% PU2 hydrogels injected into the zebrafish embryo neural injury model could rescue the function of impaired nervous system. However, NSC-laden 25-30% PU1 hydrogels only showed a minor repair effect in the zebrafish model. In addition, the function of adult zebrafish with traumatic brain injury was rescued after implantation of the 3D-printed NSC-laden 25% PU2 constructs. Therefore, the newly developed 3D bioprinting technique involving NSCs embedded in the thermoresponsive biodegradable polyurethane ink offers new possibilities for future applications of 3D bioprinting in neural tissue engineering. (C) 2015 Elsevier Ltd. All rights reserved.
机译:3D生物打印技术是在组织工程领域构建组织的强大工具。传统的3D打印方法涉及使用热,有毒的有机溶剂或有毒的光引发剂来制造合成支架。在这项研究中,合成了两种热响应性水基可生物降解的聚氨酯分散体(PU1和PU2),它们可以在37摄氏度左右形成凝胶而没有任何交联剂。水凝胶的刚度可以容易地通过分散体的固体含量来微调。在凝胶化之前,将神经干细胞(NSC)嵌入聚氨酯分散体中。随后将含有NSC的分散体印刷并保持在37摄氏度下。在25-30%PU2水凝胶(类似于680-2400 Pa)中的NSC具有优异的增殖和分化能力,而在25 -30%PU1水凝胶中则没有。此外,向斑马鱼胚胎神经损伤模型中注入NSC的25-30%PU2水凝胶可以挽救神经系统受损的功能。然而,载有NSC的25-30%PU1水凝胶仅在斑马鱼模型中显示出较小的修复作用。此外,植入3D打印的载有NSC的25%PU2构建体后,成年斑马鱼患有颅脑损伤的功能得以恢复。因此,新开发的3D生物打印技术涉及嵌入在热响应性可生物降解聚氨酯油墨中的NSC,为3D生物打印在神经组织工程中的未来应用提供了新的可能性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号