首页> 外文期刊>Applied optics >On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser
【24h】

On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser

机译:可见红外成像辐射计套件反射太阳波段的在轨校准及其使用太阳扩散器的挑战

获取原文
获取原文并翻译 | 示例
           

摘要

The reflective solar bands (RSBs) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite are calibrated by a solar diffuser (SD) panel whose performance is itself monitored by an accompanying solar diffuser stability monitor (SDSM). In this comprehensive work we describe the SD-based calibration algorithm of the RSBs, analyze the calibration data, and derive the performance results-the RSB calibration coefficients or F-factors-for the current three and a half years of mission. The application of the newly derived product of the SD bidirectional reflectance factor and the vignetting function for the SD screen and the newly derived SD degradation, so-called H-factors, effectively minimizes the artificial seasonal patterns in the RSB calibration coefficients due to the errors of these ingredient inputs. The full illumination region, the "sweet spot," during calibration events for SD view is carefully examined and selected to ensure high data quality and to reduce noise owing to non-fully illuminated samples. A time-dependent relative spectral response (RSR), coming from the large out-of-band contribution and the VIIRS optical system wavelength-dependent degradation, is derived from an iterative approach and applied in the SD calibration for each RSB. The result shows that VIIRS RSBs degrade much faster at near-infrared (NIR) and shortwave-infrared (SWIR) wavelength ranges due to the faster degradation of the rotating telescope assembly against the remaining part of the system. The gains of the VIIRS RSBs have degraded 2.0% (410 nm, Band M1), 0.2% (443 nm, Band M2), -0.3%(486 nm, Band M3), 0.2% (551 nm, Band M4), 6.2% (640 nm, Band I1), 11.0% (671 nm, BandM5), 21.3% (745 nm, Band M6), 35.8% (862 nm, Band I2), and 35.8% (862 nm, Band M7), respectively, since launch and 24.8% (1238 nm, Band M8), 18.5% (1378 nm, Band M9), 11.5% (1610 nm, Band I3), 11.5% (1610, Band M10), and 4.0% (2250 nm, Band M11), respectively, since 20 January 2012. It is established that the SD calibration accurately catches the on- orbit RSB degradation according to the instrument design and the calibration algorithm. However, due to the inherent nonuniform degradation of the SD affecting especially the short wavelength bands and the lack of capability of the SDSM calibration to catch degradation beyond 935 nm, the direct and the unmitigated application of the SD calibration result will introduce nonnegligible error into the calibration coefficients resulting in long-term drifts in the sensor data records and consequently the high-level products. We explicitly unveil the effect of the nonuniformity in SD degradation in the RSB calibration coefficients but also briefly discuss a critical yet simple mitigation to restore the accuracy of the calibration coefficients based on lunar observations. The methodology presented here thus remains intact as the cornerstone of the RSB calibration, and our derived RSB calibration coefficients represent the optimal result. This work has the most impact on the quality of the ocean color products that sensitively depend on the moderate visible and NIR bands (M1-M7), as well as the SWIR bands (M8, M10, and M11). (C) 2015 Optical Society of America
机译:Suomi国家极地轨道合作伙伴卫星上的可见红外成像辐射计套件(VIIRS)的反射太阳波段(RSB)由一个太阳漫射器(SD)面板进行校准,该面板本身的性能由随附的太阳漫射器稳定性监视器( SDSM)。在这项全面的工作中,我们描述了RSB的基于SD的校准算法,分析了校准数据,并得出了当前三年半任务的性能结果-RSB校准系数或F因子。 SD双向反射系数的新乘积和用于SD屏幕的渐晕功能以及新获得的SD退化的应用,即所谓的H因子,有效地减小了由于误差导致的RSB校准系数中的人为季节性模式这些成分输入。仔细检查和选择用于SD视图的校准事件期间的整个照明区域(“最佳点”),以确保高数据质量并减少由于未完全照明的样本而导致的噪声。来自大量带外贡献和VIIRS光学系统的波长相关衰减的时间相关的相对光谱响应(RSR)是从迭代方法中得出的,并应用于每个RSB的SD校准中。结果表明,由于旋转望远镜组件相对于系统其余部分的降解速度更快,VIIRS RSB在近红外(NIR)和短波红外(SWIR)波长范围内的降解速度更快。 VIIRS RSB的增益降低了2.0%(410 nm,M1波段),0.2%(443 nm,M2波段),-0.3%(486 nm,M3波段),0.2%(551 nm,M4波段),6.2分别为%(640 nm,Band I1),11.0%(671 nm,BandM5),21.3%(745 nm,Band M6),35.8%(862 nm,Band I2)和35.8%(862 nm,M7 Band) ,自发射以来,分别为24.8%(1238 nm,M8波段),18.5%(1378 nm,M9波段),11.5%(1610 nm,I3波段),11.5%(1610,M10波段)和4.0%(2250 nm,自2012年1月20日起分别成为M11频段)。根据仪器设计和校准算法,可以确定SD校准能够准确捕获轨道上RSB的退化。但是,由于SD固有的不均匀退化,尤其是影响短波段,并且SDSM校准缺乏捕捉935 nm以上的退化的能力,因此,将SD校准结果的直接应用和不容置疑的应用将在误差中引入不可忽略的误差。校准系数会导致传感器数据记录和高级产品的长期漂移。我们在RSB校准系数中明确揭示了SD降级不均匀的影响,但同时也简要讨论了一个关键而又简单的缓解方法,以基于月球观测来恢复校准系数的准确性。因此,这里介绍的方法仍然是RSB校准的基石,并且我们得出的RSB校准系数代表了最佳结果。这项工作对海洋色产品的质量影响最大,海洋色产品的质量敏感地取决于中等可见光和NIR波段(M1-M7)以及SWIR波段(M8,M10和M11)。 (C)2015年美国眼镜学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号