首页> 外文期刊>Nanotechnology >Integration of solid-state nanopores in a 0.5 μm CMOS foundry process
【24h】

Integration of solid-state nanopores in a 0.5 μm CMOS foundry process

机译:固态纳米孔在0.5μmCMOS铸造工艺中的集成

获取原文
获取原文并翻译 | 示例
           

摘要

High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO_2+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO _2 membrane. To prevent this leakage, we coat the membrane with Al_2O_3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO_2 and SiN _x. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al_2O _3.
机译:高带宽,低噪声的纳米孔传感器和检测电子器件对于实现基于单DNA的分辨率至关重要。实现此目标的一种潜在方法是将固态纳米孔集成在CMOS平台内,并紧靠偏置电极和定制设计的放大器电子器件。在这里,我们报告了固态纳米孔器件在以半导体上的0.5μm技术实现的商用互补金属氧化物半导体(CMOS)恒电位仪芯片中的集成。通过利用在上述工艺中可获得的n +多晶硅/ SiO_2 / n +多晶硅电容器结构的后CMOS微加工来制造结合有电极的纳米孔膜。纳米孔是在CMOS工艺中通过在透射电子显微镜中钻孔并通过原子层沉积而收缩而产生的。我们还描述了一种批处理方法,该方法通过电子束光刻和原子层沉积在CMOS兼容晶圆上处理大量直径小于10 nm的电极嵌入纳米孔。通过测试片上电路的电气功能,可以验证我们制造工艺的CMOS兼容性。我们观察到由于离子通过SiO _2膜扩散而导致的CMOS纳米孔器件的高电流泄漏。为了防止这种泄漏,我们在膜上涂了Al_2O_3,Al_2O_3可以有效抵抗碱离子的扩散。与SiO_2和SiN_x相比,所得的纳米孔器件还表现出更高的鲁棒性和更低的1 / f噪声。此外,我们为我们的低电容CMOS纳米孔器件提出了一个理论模型,与实验值显示出很好的一致性。此外,提出了使用48.5 kbpλ-DNA进行易位研究的实验和理论模型,以证明Al_2O _3包被的芯片上孔的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号