首页> 外文学位 >A Charge Pump Architecture with High Power-Efficiency and Low Output Ripple Noise in 0.5 mum CMOS Process Technology.
【24h】

A Charge Pump Architecture with High Power-Efficiency and Low Output Ripple Noise in 0.5 mum CMOS Process Technology.

机译:采用0.5 um CMOS工艺技术的具有高功率效率和低输出纹波噪声的电荷泵架构。

获取原文
获取原文并翻译 | 示例

摘要

The demand of portable consumer electronic devices is skyrocketing day-by-day. Such modern integrated microsystems have several functional blocks which require different voltages to operate adequately. DC-DC converter circuits are used to generate different voltage domains for different functional blocks on large integrated microsystems from a single voltage battery-operated power supply. Charge pump is an inductorless DC-DC converter which generates higher positive voltage or lower voltage or negative voltage from the applied reference voltage. A charge pump circuit uses switches for charge transfer action and capacitors for charge storage. The thesis presents a high power-efficiency charge pump architecture with low output ripple noise in the AMI N-well 0.5 microm CMOS process technology. The switching action of the proposed charge pump architecture is controlled by a dual phase non-overlapping clock system. In order to achieve high power-efficiency, the power losses due to the leakage currents, the finite switch resistance and the imperfect charge transfer between the capacitors are taken into consideration and are minimized by proper switching of the charge transfer switches and by using different auxiliary circuits. To achieve low output ripple noise, the continuous current pumping method is proposed and implemented in the charge pump architecture. The proposed charge pump can operate over the wide input voltage range varying from 3 V to 7 V with the power conversion efficiency of 90%. The loading current drive capability of the proposed charge pump is ranging from 0 to 45 mA. The worst case output ripple voltage is less than 25 mV. To prove the concept, the design of the proposed charge pump is simulated rigorously over different process, temperature and voltage corners.
机译:便携式消费电子设备的需求每天都在飞速增长。这种现代的集成微系统具有几个功能块,这些功能块需要不同的电压才能正常工作。 DC-DC转换器电路用于从单个电压电池供电的电源为大型集成微系统上的不同功能块生成不同的电压域。电荷泵是无电感器DC-DC转换器,可从施加的参考电压产生更高的正电压或更低的电压或负电压。电荷泵电路使用开关进行电荷转移,并使用电容器进行电荷存储。本文提出了一种高功率效率的电荷泵架构,它采用AMI N阱0.5微米CMOS工艺技术,具有低输出纹波噪声。所提出的电荷泵架构的开关动作由双相不重叠时钟系统控制。为了实现高功率效率,考虑了由于泄漏电流,有限的开关电阻和电容器之间的不完美电荷转移而导致的功率损耗,并通过适当地切换电荷转移开关并使用不同的辅助装置将其最小化。电路。为了实现低输出纹波噪声,提出了连续电流泵浦方法,并在电荷泵架构中实现了该方法。提出的电荷泵可以在3V至7V的宽输入电压范围内工作,功率转换效率为90%。所提出的电荷泵的负载电流驱动能力为0至45 mA。最坏的情况是输出纹波电压小于25 mV。为了证明这一概念,在不同的过程,温度和电压角上严格模拟了所提出的电荷泵的设计。

著录项

  • 作者

    Modi, Primit.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Electrical engineering.
  • 学位 M.S.
  • 年度 2012
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号