首页> 外文期刊>Nanotechnology >Substitutionally doped phosphorene: electronic properties and gas sensing
【24h】

Substitutionally doped phosphorene: electronic properties and gas sensing

机译:取代掺杂的磷烯:电子性质和气体传感

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.
机译:磷,一种新型的二维元素,由于其吸引人的电子性能而引起了越来越多的关注。特别是,原始的磷苯乙烯由于其超高的表面体积比和高的化学活性,已显示出对气体传感的前景(Abbas等人,2015 ACS Nano 9 5618)。为了进一步增强其传感能力,我们基于密度泛函理论进行了第一性原理计算,以研究具有17个不同原子的取代掺杂的磷烯,重点研究了结构,高能学,电子性质和气体传感。我们的计算表明,阴离子X(X = O,C和S)掺杂剂具有大的结合能和高度分散的电子态,表明形成共价X-P键并因此具有很强的结构稳定性。发现碱原子(Li和Na)掺杂通过与P形成离子键,在外s轨道上提供了大部分电子,并且通过向下推导带而减小了带隙,这表明碱的光学和电子性质可以定制掺杂的磷烯。对于掺杂VIIIB族元素(Fe,Co和Ni),可以预测到很强的亲和力,并且结合能和电荷转移与其电负性密切相关。通过检查NO分子的吸附,我们发现这些金属掺杂的磷烯(MDP)与原始的磷烯相比,通常具有显着增强的化学活性。我们的研究表明,取代掺杂的磷烯显示出许多与原始磷烯不同的有趣的电子和光学性质,MDP在涉及分子吸附和解吸过程的化学应用中很有希望,例如材料生长,催化,气体传感和存储。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号