...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Preparation of highly polarized nuclear spin systems using brute-force and low-field thermal mixing
【24h】

Preparation of highly polarized nuclear spin systems using brute-force and low-field thermal mixing

机译:利用蛮力和低场热混合制备高极化核自旋系统

获取原文
获取原文并翻译 | 示例
           

摘要

Over the years, several strategies have been developed for generating highly polarized nuclear spin systems, including dynamic nuclear polarization, optical pumping, and methods exploiting parahydrogen. Here, we present an alternative strategy, using an enhanced 'brute-force' approach {i.e. exposure to low temperatures and high applied magnetic fields). The main problem with this approach is that it may take an excessively long time for the nuclear polarization to approach thermal equilibrium at low temperatures, since nuclear relaxation becomes exceedingly slow due to the loss of molecular motion. We show that low-field thermal mixing can alleviate the problem by increasing the rate at which slowly-relaxing nuclei reach equilibrium. More specifically, we show that polarization can be transferred from a relatively rapidly relaxing ~1H reservoir to more slowly relaxing ~(13)C and ~(31)P nuclei. The effects are particularly dramatic for the ~(31)P nuclei, which in experiments at a temperature of 4.2 K and a field of 2 T show a 75-fold enhancement in their effective rate of approach to equihbrium, and an even greater (150-fold) enhancement in the presence of a relaxation agent. The mixing step is also very effective in terms of the amount of polarization transferred-70-90% of the maximum theoretical value in the experiments reported here. These findings have important implications for brute-force polarization, for the problem becomes one of how to relax the solvent protons rather than individual more slowly-relaxing nuclei of interest. This should be a much more tractable proposition, and offers the additional attraction that a wide range of nuclear species can be polarized simultaneously. We further show that the ~1H reservoir can be tapped repeatedly through a number of consecutive thermal mixing steps, and that this could provide additional sensitivity enhancement in solid-state NMR.
机译:多年来,已经开发出了用于产生高度极化的核自旋系统的几种策略,包括动态核极化,光泵浦和利用对氢的方法。在这里,我们提出了一种替代策略,即使用增强的“蛮力”方法{暴露于低温和强磁场中)。这种方法的主要问题是,由于分子运动的损失,核弛豫变得非常缓慢,因此核极化在低温下可能需要很长时间才能达到热平衡。我们表明,低场热混合可以通过增加缓慢松弛的原子核达到平衡的速率来缓解该问题。更具体地说,我们显示极化可以从相对快速松弛的〜1H储层转移到更缓慢松弛的〜(13)C和〜(31)P核。对于〜(31)P原子核,其影响尤为显着,在4.2 K温度和2 T磁场的实验中,它们达到平衡的有效速率提高了75倍,甚至更高(150)。 -倍)在松弛剂存在下的增强。就这里报道的实验中极化转移量-最大理论值的70-90%而言,混合步骤也非常有效。这些发现对蛮力极化具有重要意义,因为问题已成为如何放松溶剂质子而不是单个较慢松弛的目标核的方法之一。这应该是一个更容易处理的主张,并提供额外的吸引力,即可以同时极化多种核种。我们进一步表明,〜1H储层可以通过许多连续的热混合步骤重复抽出,这可以在固态NMR中提供额外的灵敏度提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号