首页> 外文期刊>Physical chemistry chemical physics: PCCP >Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering
【24h】

Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering

机译:通过界面工程同时提高聚合物太阳能电池的功率转换效率和操作稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

This article addresses simultaneous improvements in the photovoltaic performance and operational stability of organic photovoltaic devices (OPVs) in the inverted configuration when nanostructured ZnO characterized by a lower density of localized surface atomic energy states is employed as an electron transport layer. Two sets of devices with the configuration ITO/ZnO/P3HT:PGBM/MoO3/Ag are employed in the present study. A difference in the density of localized energy states in the band gap of ZnO was produced by altering the crystallinity by annealing the ZnO at two temperatures, viz. 160 and 240 °C. The devices are characterized by scanning electron microscopy, X-ray diffractometry, current-voltage (I-V) measurements as functions of temperature and illumination intensity, incident photon to current conversion efficiency (IPCE) spectroscopy, and charge extraction by linearly increasing photo-voltage (CELIV) spectroscopy. The devices fabricated using the ZnO nanostructures annealed at 240 °C have shown remarkably higher power conversion efficiency (PCE) and IPCE values than the other device. From I-V measured as a function of photon flux and temperature we show that the device with higher PCE is characterized by a lower depth of localized energy states by a factor of two than the other device. The implications of the lower trap depth was also evaluated using CELIV and the corresponding charge mobility obtained differed by a factor of three between the two sets of devices. The device with lower equilibrium concentration at the interface has three fold higher charge mobility and 40% enhanced photoconversion efficiency. The stability of the devices was evaluated with and without encapsulation under simulated sunlight (AM 1.5) following the ISOS-D-1 (shelf) and the ISOS-L-1 protocols; the device with higher PCE also showed higher operational stability. The findings in this study are expected to provide new directions in fabricating organic-inorganic heterojunction devices with high performance and stability.
机译:当采用以较低的局部表面原子能态密度为特征的纳米结构ZnO作为电子传输层时,本文解决了反向配置中同时提高了光伏性能和有机光伏器件(OPV)的操作稳定性的问题。在本研究中使用了两组配置为ITO / ZnO / P3HT:PGBM / MoO3 / Ag的设备。 ZnO带隙中局部能态密度的差异是通过在两个温度下对ZnO进行退火来改变结晶度而产生的。 160和240°C。这些器件的特征在于扫描电子显微镜,X射线衍射,作为温度和照明强度的函数的电流-电压(IV)测量,入射光子至电流转换效率(IPCE)光谱以及通过线性增加光电压( CELIV)光谱。使用在240°C退火的ZnO纳米结构制造的器件显示出比其他器件明显更高的功率转换效率(PCE)和IPCE值。根据作为光子通量和温度的函数测得的I-V,我们发现具有较高PCE的设备的特征在于局部能量状态的深度比其他设备低两倍。使用CELIV还评估了较低陷阱深度的含义,并且在两组器件之间获得的相应电荷迁移率相差三倍。在界面处具有较低平衡浓度的器件具有高三倍的电荷迁移率和40%的提高的光转换效率。按照ISOS-D-1(搁板)和ISOS-L-1协议,在模拟阳光(AM 1.5)下有无封装下评估了设备的稳定性;具有较高PCE的设备也显示出较高的操作稳定性。这项研究中的发现有望为制造具有高性能和稳定性的有机-无机异质结器件提供新的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号