首页> 外文期刊>Physical chemistry chemical physics: PCCP >Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering
【24h】

Simultaneous improvements in power conversion efficiency and operational stability of polymer solar cells by interfacial engineering

机译:通过界面工程同时提高功率转换效率和聚合物太阳能电池的操作稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

This article addresses simultaneous improvements in the photovoltaic performance and operational stability of organic photovoltaic devices (OPVs) in the inverted configuration when nanostructured ZnO characterized by a lower density of localized surface atomic energy states is employed as an electron transport layer. Two sets of devices with the configuration ITO/ZnO/P3HT:PGBM/MoO3/Ag are employed in the present study. A difference in the density of localized energy states in the band gap of ZnO was produced by altering the crystallinity by annealing the ZnO at two temperatures, viz. 160 and 240 °C. The devices are characterized by scanning electron microscopy, X-ray diffractometry, current-voltage (I-V) measurements as functions of temperature and illumination intensity, incident photon to current conversion efficiency (IPCE) spectroscopy, and charge extraction by linearly increasing photo-voltage (CELIV) spectroscopy. The devices fabricated using the ZnO nanostructures annealed at 240 °C have shown remarkably higher power conversion efficiency (PCE) and IPCE values than the other device. From I-V measured as a function of photon flux and temperature we show that the device with higher PCE is characterized by a lower depth of localized energy states by a factor of two than the other device. The implications of the lower trap depth was also evaluated using CELIV and the corresponding charge mobility obtained differed by a factor of three between the two sets of devices. The device with lower equilibrium concentration at the interface has three fold higher charge mobility and 40% enhanced photoconversion efficiency. The stability of the devices was evaluated with and without encapsulation under simulated sunlight (AM 1.5) following the ISOS-D-1 (shelf) and the ISOS-L-1 protocols; the device with higher PCE also showed higher operational stability. The findings in this study are expected to provide new directions in fabricating organic-inorganic heterojunction devices with high performance and stability.
机译:本文在纳米结构ZnO采用作为电子传输层的局部表面原子能状态的较低密度的纳米结构ZnO时,本文在倒置构型中的光伏性能和操作稳定性的同时改进。两组具有配置ITO / ZnO / P3HT的装置:PGBM / MOO3 / AG在本研究中使用。通过在两个温度下,通过在两个温度下通过退火,通过在两个温度下通过退火来改变结晶度来产生ZnO带隙中的局部能量状态的差异。 160和240°C。这些器件的特征在于扫描电子显微镜,X射线衍射测定,电流 - 电压(IV)测量作为温度和照明强度的功能,入射光子与电流转换效率(IPCE)光谱的功能,以及通过线性增加光电电荷提取( Celiv)光谱学。使用在240℃下退火的ZnO纳米结构制造的装置已经显示出比另一个设备更高的功率转换效率(PCE)和IPCE值。根据作为光子通量和温度的函数测量的I-V来表明,具有较高PCE的装置的特征在于局部能量状态的较低深度比另一个装置的倍数。还使用CERIV评估较低陷阱深度的含义,并且在两组设备之间获得的相应电荷迁移率不同。界面处具有较低平衡浓度的装置具有三倍的电荷迁移率和40%增强的光电转换效率。在ISOS-D-1(架子)和ISOS-1-1方案之后,在模拟的阳光下(AM 1.5)下的封装评估了器件的稳定性;具有较高PCE的装置还显示出更高的操作稳定性。该研究中的发现预计在制造具有高性能和稳定性的有机 - 无机异质结装置方面提供新的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号