...
首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
【24h】

Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

机译:使用蓝色失谐的空心光束漏斗优化冷原子与光纤的耦合

获取原文
获取原文并翻译 | 示例
           

摘要

We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-μm-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.
机译:我们从理论上研究了使用蓝色失谐的Laguerre-Gaussian光束将冷原子耦合到空心光子晶体光纤的纤芯中的过程。与使用红色失谐的高斯束耦合原子相反,蓝色失谐的中空束可以将冷原子限制在束的最暗区域,从而使内部状态的偏移最小化,并使导向器对加热具有很高的鲁棒性效果。该单一光束既用作漏斗又用作引导,以最大化进入光纤的原子数。在提出的实验中,Rb原子被加载到垂直定向光纤上方的磁光阱(MOT)中。我们观察到围绕陷阱轴具有高轨道动量的原子的重力光学陷阱效应,这阻止了原子耦合到光纤:这些原子缺乏动能来逃逸电势,因此被无限期地捕获在激光漏斗中。我们发现,通过将偶极力减小到俘获效应消失的程度,可以优化原子到光纤中的耦合。我们的模拟预测,通过使用低功率(2.5 mW)和失谐(300 GHz)的拉盖尔-高斯光束和半径为20μm的中空光纤,可以耦合MOT中11%的原子距离光纤9毫米。当将MOT放置在较远的位置时,使用较大的芯线光纤可实现超过50%的耦合效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号