...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish.
【24h】

Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish.

机译:斑马鱼中产生扫视的神经元的光遗传定位和遗传扰动。

获取原文
获取原文并翻译 | 示例
           

摘要

The optokinetic response (OKR) to a visual stimulus moving at constant velocity consists of a series of two alternating components, a slow phase, during which the eyes follow the stimulus, and a quick phase, which resets the eyes to begin a new response cycle. The quick phases of the OKR resemble the saccades observed during free viewing. It is unclear to what extent the premotor circuitry underlying these two types of jerky, conjugate eye movements is conserved among vertebrates. Zebrafish (Danio rerio) larvae, broadly expressing halorhodopsin (NpHR) or channelrhodopsin-2 (ChR2) in most neurons, were used to map the location of neurons involved in this behavior. By blocking activity in localized groups of NpHR-expressing neurons with an optic fiber positioned above the head of the fish and by systematically varying the site of photostimulation, we discovered that activity in a small hindbrain area in rhombomere 5 was necessary for saccades to occur. Unilateral block of activity at this site affected behavior in a direction-specific manner. Inhibition of the right side suppressed rightward saccades of both eyes, while leaving leftward saccades unaffected, and vice versa. Photostimulation of this area in ChR2-transgenic fish was sufficient to trigger saccades that were precisely locked to the light pulses. These extra saccades could be induced both during free viewing and during the OKR, and were distinct in their kinetics from eye movements elicited by stimulating the abducens motor neurons. Zebrafish double indemnity (didy) mutants were identified in a chemical mutagenesis screen based on a defect in sustaining saccades during OKR. Positional cloning, molecular analysis, and electrophysiology revealed that the didy mutation disrupts the voltage-gated sodium channel Scn1lab (Nav1.lb). ChR2 photostimulation of the putative hindbrain saccade generator was able to fully reconstitute saccades in the didy mutant. Our studies demonstrate that an optogenetic approach is useful for targeted loss-of-function and gain-of-function manipulations of neural circuitry underlying eye movements in zebrafish and that the saccade-generating circuit in this species shares many of its properties with that in mammals.
机译:对以恒定速度运动的视觉刺激的视动反应(OKR)包括一系列两个交替的分量:慢速阶段(在此阶段中,眼睛跟随刺激)和快速阶段(在此阶段中,眼睛复位)以开始新的响应周期。 OKR的快速阶段类似于自由观看期间观察到的扫视。目前尚不清楚在脊椎动物中,这两种类型的生涩的,共轭的眼球运动所基于的前运动电路在何种程度上得以保留。在大多数神经元中广泛表达卤代视紫红质(NpHR)或通道视紫红质2(ChR2)的斑马鱼(Danio rerio)幼虫被用来绘制这种行为涉及的神经元的位置。通过用定位在鱼头上方的光纤阻断表达NpHR的神经元的局部活动并通过系统地改变光刺激的位置,我们发现菱形5的小后脑区域的活动对于扫视是必要的。该部位的单方面活动受特定方向影响。抑制右侧会抑制两只眼睛的右眼扫视,而不会影响左眼扫视,反之亦然。 ChR2转基因鱼中该区域的光刺激足以触发精确锁定于光脉冲的扫视。这些额外的扫视可能在自由观看期间和在OKR期间引起,并且在动力学上与刺激外展运动神经元引起的眼球运动截然不同。基于OKR期间持续扫视的缺陷,在化学诱变筛选中鉴定出斑马鱼双倍补偿(didy)突变体。位置克隆,分子分析和电生理学研究表明,双离子突变破坏了电压门控钠通道Scn1lab(Nav1.lb)。假定的后脑扫视产生器的ChR2光刺激能够完全重建didy突变体中的扫视。我们的研究表明,光遗传学方法可用于斑马鱼眼睛运动背后的神经回路的定向功能丧失和功能获得操纵,并且该物种中产生扫视的电路与哺乳动物具有许多特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号