...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks
【24h】

Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks

机译:细胞稳态内在可塑性对生物递归神经网络动力学和计算特性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Homeostatic intrinsic plasticity (HIP) is a ubiquitous cellular mechanism regulating neuronal activity, cardinal for the proper functioning of nervous systems. In invertebrates, HIP is critical for orchestrating stereotyped activity patterns. The functional impact of HIP remains more obscure in vertebrate networks, where higher order cognitive processes rely on complex neural dynamics. The hypothesis has emerged that HIP might control the complexity of activity dynamics in recurrent networks, with important computational consequences. However, conflicting results about the causal relationships between cellular HIP, network dynamics, and computational performance have arisen from machine learning studies. Here, we assess how cellular HIP effects translate into collective dynamics and computational properties in biological recurrent networks. We develop a realistic multiscale model including a generic HIP rule regulating the neuronal threshold with actual molecular signaling pathways kinetics, Dale's principle, sparse connectivity, synaptic balance, and Hebbian synaptic plasticity (SP). Dynamic mean-field analysis and simulations unravel that HIP sets a working point at which inputs are transduced by large derivative ranges of the transfer function. This cellular mechanism ensures increased network dynamics complexity, robust balance with SP at the edge of chaos, and improved input separability. Although critically dependent upon balanced excitatory and inhibitory drives, these effects display striking robustness to changes in network architecture, learning rates, and input features. Thus, the mechanism we unveil might represent a ubiquitous cellular basis for complex dynamics in neural networks. Understanding this robustness is an important challenge to unraveling principles underlying self-organization around criticality in biological recurrent neural networks.
机译:稳态内在可塑性(HIP)是调节神经元活动的普遍存在的细胞机制,是神经系统正常运作的主要方法。在无脊椎动物中,HIP对于编排定型活动模式至关重要。 HIP的功能影响在脊椎动物网络中仍然较为模糊,在脊椎动物网络中,较高阶的认知过程依赖于复杂的神经动力学。假说已经出现,即HIP可能控制循环网络中活动动态的复杂性,并产生重要的计算结果。但是,有关机器HIP,网络动力学和计算性能之间因果关系的矛盾结果已经从机器学习研究中得出。在这里,我们评估细胞HIP效应如何转化为生物循环网络中的集体动力学和计算特性。我们开发了一个现实的多尺度模型,包括一个通用的HIP规则,该规则通过实际的分子信号传导动力学,Dale原理,稀疏连通性,突触平衡和Hebbian突触可塑性(SP)调节神经元阈值。动态平均场分析和模拟揭示了HIP设置了一个工作点,在该工作点处,传递函数的较大导数范围会转换输入。这种蜂窝机制确保增加的网络动力学复杂性,在混乱边缘与SP的稳健平衡以及改善的输入可分离性。尽管这些效果主要取决于平衡的兴奋性和抑制性驱动力,但这些效果对于网络体系结构,学习率和输入功能的变化显示出惊人的鲁棒性。因此,我们揭示的机制可能代表了神经网络中复杂动力学的普遍存在的细胞基础。理解这种鲁棒性是围绕生物学循环神经网络中的关键性展开自我组织基础的重要挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号