...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Electron attachment to the hydrogenated Watson-Crick guanine cytosine base pair (GC+H): Conventional and proton-transferred structures
【24h】

Electron attachment to the hydrogenated Watson-Crick guanine cytosine base pair (GC+H): Conventional and proton-transferred structures

机译:电子与氢化沃森-克里克鸟嘌呤胞嘧啶碱基对(GC + H)的连接:常规结构和质子转移结构

获取原文
获取原文并翻译 | 示例
           

摘要

The anionic species resulting from hydride addition to the Watson-Crick guanine-cytosine (GC) DNA base pair are investigated theoretically. Proton-transferred structures of GC hydride, in which proton Hl of guanine or proton H4 of cytosine migrates to the complementary base-pair side,have been studied also. All optimized geometrical structures are confirmed to be minima via vibrational frequency analyses. The lowest energy structure places the additional hydride on the C6 position of cytosine coupled with proton transfer, resulting in the closed-shell anion designated IT (G(-)C(C6)). Energetically, the major groove side of the GC pair has a greater propensity toward hydride/hydrogen addition than does the minor grove side. The pairing (dissociation) energy and electron -attracting ability of each anionic structure are predicted and compared with those of the neutral GC and the hydrogenated GC base pairs. Anion 8T (G(06)C-) is a water-extracting complex and has the largest dissociation energy. Anion 2 (GC(C4)(-)) and the corresponding open-shell radical GC(C4) have the largest vertical electron detachment energy and adiabatic electron affinity, respectively. From the difference between the dissociation energy and electron-removal ability of the normal GC anion and the most favorable structure of GC hydride, it is clear that one may dissociate the GC anion and maintain the integrity of the GC hydride.
机译:从理论上研究了向Watson-Crick鸟嘌呤-胞嘧啶(GC)DNA碱基对添加氢化物所产生的阴离子种类。还研究了GC氢化物的质子转移结构,其中鸟嘌呤的质子H1或胞嘧啶的质子H4迁移至互补碱基对侧。通过振动频率分析,确认所有优化的几何结构均为极小值。最低的能量结构将附加的氢化物置于胞嘧啶的C6位置并与质子转移耦合,从而产生称为IT(G(-)C(C6))的闭壳阴离子。从能量上讲,GC对的主要凹槽侧比次要凹槽侧具有更大的氢化物/氢添加倾向。预测了每个阴离子结构的配对(解离)能和电子吸引能力,并将其与中性GC和氢化GC碱基对进行了比较。阴离子8T(G(06)C-)是一种吸水配合物,具有最大的离解能。阴离子2(GC(C4)(-))和相应的开壳自由基GC(C4)分别具有最大的垂直电子脱离能和绝热电子亲和力。从普通GC阴离子的离解能和电子去除能力与GC氢化物的最有利结构之间的差异,可以明显看出人们可以离解GC阴离子并保持GC氢化物的完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号