...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Ultrafast Solid-State Transformation Pathway from New-Phased Goethite VOOH to Paramontroseite VO2 to Rutile VO2(R)
【24h】

Ultrafast Solid-State Transformation Pathway from New-Phased Goethite VOOH to Paramontroseite VO2 to Rutile VO2(R)

机译:从新型针铁矿VOOH到蒙脱石VO2到金红石VO2的超快固态转变途径

获取原文
获取原文并翻译 | 示例
           

摘要

Monoclinic vanadium dioxides VO2(M) is prototype material for interpreting correlation effects in solids, and its fully reversible metal—insulator transition (MIT) also brings the great interest in construction of intelligent devices such as temperature sensors and energy-efficient smart windows. The solid-state transformation started from vanadium precursors has been long-term regarded as the classic effective route to rutile VO2(R), while the conventional vanadium precursors usually requires indispensable atomic lattice rearrangement and reshuffling to realize rutile VO2(R) phase, leading to strict experimental conditions, high cost, and long conversion time (even more than one day) during the VO2(R) formation process. Herein, under the theoretical guidance of atomically structural analysis, a new structure-conversion pathway from goethite VOOH to paramontroseite VO2 to rutile VO2(R) realized an alternative ultrafast transformation into desired monoclinic VO2(M), of which each two steps only requires within 60 s. Thanks to the discovered new-phased goethite VOOH, the well-crystalline synthetic paramontroseite VO2 was realized from the chemically synthetic way, and in effect the paramontroseite structure plays the decisive role in achieving the desired monoclinic VO2(M) from the structural viewpoint, which would further promote this expensive material into the realm of conventional laboratory synthesis. The realized monoclinic VO2(M) exhibits the smart switching properties in regulating thermal, magnetic, and near IR light behaviors, and more importantly the metal-insulator transition (MIT) parameters such as the MIT temperature and the width of heating-cooling hysteresis are now precisely controlled. These intriguing findings may pave new way for designing other functional solid materials with correlation effects and then providing the material guarantee for constructing the intelligent devices in future.
机译:单斜晶二氧化钒VO2(M)是用于解释固体中相关效应的原型材料,其完全可逆的金属-绝缘体转变(MIT)也引起了对智能设备(如温度传感器和节能型智能窗户)构造的极大兴趣。从钒前体开始的固态转变一直被认为是实现金红石VO2(R)的经典有效途径,而常规钒前体通常需要不可或缺的原子晶格重排和改组以实现金红石VO2(R)相,从而在严格的实验条件,高成本和较长的VO2(R)形成过程中转换时间(甚至超过一天)的条件下。在此,在原子结构分析的理论指导下,从针铁矿VOOH到准蒙脱石VO2到金红石VO2(R)的新结构转化路径实现了另一种超快转化为所需单斜晶VO2(M)的方法,其中每两个步骤仅需在60秒得益于发现的新相针铁矿VOOH,从化学合成的方式实现了结晶度高的合成准蒙脱石VO2,实际上,从结构的角度来看,准蒙脱石结构在实现所需的单斜晶VO2(M)中起着决定性的作用,会进一步将这种昂贵的材料推广到常规实验室合成领域。所实现的单斜晶VO2(M)在调节热,磁和近红外光行为方面显示出智能的开关特性,更重要的是,金属-绝缘体转变(MIT)参数(例如MIT温度和加热冷却滞后宽度)为现在精确控制。这些有趣的发现可能为设计其他具有相关效果的功能性固体材料铺平了道路,从而为将来构建智能设备提供了材料保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号