首页> 外文期刊>Journal of Applied Polymer Science >Development of a novel polymer-metal nanocomposite obtained through the route of in situ reduction for integral capacitor application
【24h】

Development of a novel polymer-metal nanocomposite obtained through the route of in situ reduction for integral capacitor application

机译:通过原位还原途径获得的用于聚合物电容器的新型聚合物-金属纳米复合材料的开发

获取原文
获取原文并翻译 | 示例
           

摘要

Metal nanoparticles exhibit a number of interesting, characteristics, including unique physical, chemical, optical, magnetic, and electric properties. Numerous investigations have exploited their properties in a readily usable form by incorporating them into polymers. The current focus of interest is the behavior of such polymer nanocomposites near the percolation loading levels of the metal nanoparticles. This material is particularly suitable for the new integral passive technology. Discrete capacitors are used in many applications, such as noise suppression, filtering, tuning, decoupling, bypassing, termination, and frequency determination, and they occupy a substantial amount of surface area on a substrate. Thus there are limitations in the number of capacitors that can be placed around the chip. Integral passive components are gradually replacing discrete components because of the inherent advantages of improved electrical performance, increased real estate on the printed wiring board, miniaturization of interconnect distance, reduced processing costs, and efficient electronics packaging. For integral capacitors, polymer composite material has emerged as a potential candidate because it meets the requirements of low processing temperature and reasonably high dielectric constant. Yang and Wong, whose patent was filed in 2001, demonstrated novel integral passive component materials with extraordinarily high dielectric constants (K > 1000) and high reliability performance. These materials are characterized by high dielectric constant based on the mechanism of interfacial polarization, although they need precision filler concentration control. The current study overcomes this drawback and produces the composite through an in situ reduction in an epoxy matrix. Material characterization was done through TEM, SEM, X-ray analysis, and energy-dispersive analysis for X rays. (C) 2004 Wiley Periodicals, Inc.
机译:金属纳米颗粒具有许多有趣的特性,包括独特的物理,化学,光学,磁性和电学性质。通过将它们掺入聚合物中,许多研究已经以易于使用的形式利用了它们的性能。当前关注的焦点是这种聚合物纳米复合材料在金属纳米颗粒的渗透负荷水平附近的行为。这种材料特别适合于新的整体无源技术。分立电容器用于许多应用中,例如噪声抑制,滤波,调谐,去耦,旁路,端接和频率确定,它们占据了基板上相当大的表面积。因此,可在芯片周围放置的电容器数量受到限制。集成无源元件的固有优点是:电气性能得到改善,印刷线路板上的空间增加,互连距离最小化,处理成本降低以及有效的电子封装,这些固有的优势正逐步取代分立元件。对于集成电容器,聚合物复合材料已成为一种潜在的候选材料,因为它满足了较低的加工温度和相当高的介电常数的要求。 Yang和Wong于2001年申请了专利,展示了新颖的整体无源元件材料,该材料具有极高的介电常数(K> 1000)和高可靠性。尽管这些材料需要精确的填料浓度控制,但它们具有基于界面极化机理的高介电常数的特点。当前的研究克服了该缺点,并通过在环氧基质中原位还原来生产复合材料。通过TEM,SEM,X射线分析和X射线能量色散分析对材料进行表征。 (C)2004年Wiley Periodicals,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号