...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Extremely high wear resistance and ultra-low friction behaviour of oxygen-plasma-treated nanocrystalline diamond films
【24h】

Extremely high wear resistance and ultra-low friction behaviour of oxygen-plasma-treated nanocrystalline diamond films

机译:氧等离子体处理的纳米晶金刚石薄膜的极高耐磨性和超低摩擦性能

获取原文
获取原文并翻译 | 示例
           

摘要

The diamond nanowire (DNW) film was deposited by N_2-enriched microwave plasma-enhanced chemical vapour deposition (MPECVD) process. As-deposited DNW film was treated in O_2 plasma which resulted in chemical and microstructural modification. Sheath of the DNW film is chemically constituted by amorphous carbon (a-C)- and graphite (sp~2C=C)-like bonding. However, nanowires transformed into ultra-small spherical grains after the O_2-plasma treatments. In this condition, a-C and sp ~2C=C bonding significantly reduced due to plasma etching caused by oxygen atoms. After the O_2-plasma treatment, formation of functional groups such as C=O, C-O-C, O-H, O-CH_3 and H_2O was observed on the surface and inside the wear track as evident from the micro FTIR analysis. H_2O is hydrogen bonded to oxygen-containing groups such as -OH and -H. The O_2-plasma-exposed DNW film exhibits surface charging and causes formation of dangling bonds and electron trapping centres. This results in significant decrease in contact angle, hence superhydrophilic behaviour. The friction coefficient of O_2-plasma-treated film showed super low value ~0.002 with high wear resistance 2 × 10~(-12) mm~3 N~(-1) m~(-1). In the reciprocating ball-on-disc tribology test, only ~80 nm wear loss was observed after the 1 km of sliding distance at 10 N loads. Such an advance in tribological properties is explained by passivation of covalent carbon bonding and transformation of sliding surfaces by weak van der Waals and hydrogen bondings. High surface energy and the consequent superhydrophilic behaviour of film is attributed to the formation of the above-mentioned functional groups on the surface. This protects against deformation of the wear track leading to extremely high wear resistance.
机译:通过富含N_2的微波等离子体增强化学气相沉积(MPECVD)工艺沉积金刚石纳米线(DNW)膜。沉积的DNW膜在O_2等离子体中处理,从而导致化学和微观结构的改变。 DNW膜的护套化学上由无定形碳(a-C)和石墨(sp〜2C = C)结合而成。然而,在O_2-等离子体处理之后,纳米线转变为超小的球形晶粒。在这种情况下,由于氧原子引起的等离子体蚀刻,a-C和sp〜2C = C键大大减少。 O_2-等离子体处理后,在磨损轨迹的表面和内部观察到C = O,C-O-C,O-H,O-CH_3和H_2O等官能团的形成,这从显微FTIR分析中可以看出。 H_2O是氢键合到含氧基团上,例如-OH和-H。暴露于O_2-等离子体的DNW膜表现出表面电荷,并导致悬挂键和电子俘获中心的形成。这导致接触角显着减小,因此具有超亲水性。 O_2等离子体处理后的薄膜的摩擦系数显示出极低的值〜0.002,具有2×10〜(-12)mm〜3 N〜(-1)m〜(-1)的高耐磨性。在往复式圆盘摩擦试验中,在10 N载荷下滑动1 km后,仅观察到约80 nm的磨损。摩擦学性质的这种进步可以通过共价碳键的钝化和弱范德华力和氢键对滑动表面的转化来解释。高的表面能和随之产生的膜的超亲水行为归因于在表面上形成上述官能团。这样可以防止磨损轨迹变形,从而导致极高的耐磨性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号