...
【24h】

The strength of the Iceland plume: Ageodynamical scaling approach

机译:冰岛羽流的力量:逐步缩放方法

获取原文
获取原文并翻译 | 示例
           

摘要

An important measure of the strength of a mantle plume is its buoyancy flux B, defined as the integral over a horizontal plane of the product of the vertical velocity and the density deficit within the plume. In the case of the Iceland plume, which currently rises directly beneath the mid-Atlantic ridge, published estimates of Bcover a range of a factor of 37. To reconcile these diverse estimates, we study a simple fluid mechanical model of a ridge-centered plume in which plume fluid with spreadability sigma(buoyancy over viscosity) is supplied at a volumetric rate Qfrom a plume conduit located directly beneath a ridge with a half spreading rate U. The plume fluid spreads laterally to form a thin pool beneath a lithosphere whose thickness increases as the square root of age. Application of scaling and dimensional analysis to this model leads to a general scaling law for the 'waist width' W-w, the length of the plume-induced elevation anomaly along the ridge. The law has the form W-w/W-0= f(2)(Pi(b), Pi(s)), where W-0=(sigma Q(4)/U-5)(1/6) is the fundamental length scale for plume-ridge interaction, Pi(b)=(sigma Q/ U-2)1/3is of the order of the aspect ratio (width/thickness) of the plume pool, Pi(s)=(kappa(2)sigma/U-3)(1/4) measures the effect on the pool of the sloping base of the lithosphere (kappa is the thermal diffusivity), and f(2) is an unknown function. We determine f(2) using a suite of 32 numerical solutions of a three-dimensional thermomechanical model implemented in the code StagYY (Tackley, 2008). To apply our scaling law to Iceland, we invert it to estimate the buoyancy flux Brequired to produce a waist width W-w= 2300 +/- 300km. After correction for the effect of ridge migration, we find B = 2.3 +/- 0.6 Mg s(-1). This is comparable within uncertainty to the buoyancy flux B = 3.0 +/- 0.8 Mg s(-1)of the Hawaiian plume estimated using a 3-D dynamical model by Ribe and Christensen (1999). (C) 2020 Elsevier B.V. All rights reserved.
机译:披风羽流的强度的重要衡量标准是其浮力磁通B,定义为垂直速度的乘积水平平面的积分以及羽流内的密度缺陷。在冰岛羽流的情况下,目前直接在大西洋脊下升起,BCOVER的估计为37倍的范围。为了调和这些多样化估计,我们研究了一个简单的脊柱羽流的流体机械模型其中具有可铺展σ的羽流(浮力过度粘度)以体积速率QFRom在直接位于脊下位于具有半扩散速率U的脊柱的羽流速率Q.横向延伸以形成厚度增加的岩石圈下方的薄池。作为年龄的平方根。将缩放和尺寸分析在该模型中的应用导致了“腰宽”W-W的一般缩放法,沿着脊的羽流诱导的升高异常的长度。法律具有WW / W-0 = F(2)(PI(B),PI)的形式,其中W-0 =(Sigma Q(4)/ U-5)(1/6)是羽毛 - 脊相互作用的基本长度,pi(b)=(sigma q / u-2)1/3是羽流池的纵横比(宽度/厚度)的顺序,pi(s)=(kappa( 2)Sigma / U-3)(1/4)测量对岩石圈的倾斜底座池的影响(κ是热扩散率),F(2)是未知功能。我们使用在代码STAGYY(Tackley,2008)中实施的三维热机械模型的32个数值解的套件来确定F(2)。要将扩展法应用于冰岛,我们将其倒置以估计充满安全的浮力,以产生腰部宽度W-W = 2300 +/- 300km。校正脊迁移效果后,发现B = 2.3 +/- 0.6 mg s(-1)。这在使用Ribe和Christensen(1999)的3-D动态模型的夏威夷羽流的浮动助焊剂B = 3.0 +/- 0.8mg S(-1)的不确定度内相当。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号