...
首页> 外文期刊>NeuroImage >Histological validation of diffusion MRI fiber orientation distributions and dispersion
【24h】

Histological validation of diffusion MRI fiber orientation distributions and dispersion

机译:扩散MRI纤维取向分布和分散的组织学验证

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Diffusion magnetic resonance imaging (dMRI) is widely used to probe tissue microstructure, and is currently the only non-invasive way to measure the brain's fiber architecture. While a large number of approaches to recover the intra-voxel fiber structure have been utilized in the scientific community, a direct, 3D, quantitative validation of these methods against relevant histological fiber geometries is lacking. In this study, we investigate how well different high angular resolution diffusion imaging (HARDI) models and reconstruction methods predict the ground-truth histologically defined fiber orientation distribution (FOD), as well as investigate their behavior over a range of physical and experimental conditions. The dMRI methods tested include constrained spherical deconvolution (CSD), Q-ball imaging (QBI), diffusion orientation transform (DOT), persistent angular structure (PAS), and neurite orientation dispersion and density imaging (NODDI) methods. Evaluation criteria focus on overall agreement in FOD shape, correct assessment of the number of fiber populations, and angular accuracy in orientation. In addition, we make comparisons of the histological orientation dispersion with the fiber spread determined from the dMRI methods. As a general result, no HARDI method outperformed others in all quality criteria, with many showing tradeoffs in reconstruction accuracy. All reconstruction techniques describe the overall continuous angular structure of the histological FOD quite well, with good to moderate correlation (median angular correlation coefficient?>?0.70) in both single- and multiple-fiber voxels. However, no method is consistently successful at extracting discrete measures of the number and orientations of FOD peaks. The major inaccuracies of all techniques tend to be in extracting local maxima of the FOD, resulting in either false positive or false negative peaks. Median angular errors are ~10° for the primary fiber direction and ~20° for the secondary fiber, if present. For most methods, these results did not vary strongly over a wide range of acquisition parameters (number of diffusion weighting directions and b value). Regardless of acquisition parameters, all methods show improved successes at resolving multiple fiber compartments in a voxel when fiber populations cross at near-orthogonal angles, with no method adequately capturing low to moderate angle ( Highlights ? 3D histological validation of diffusion MRI measures of fiber orientation. ? All methods capture the overall structure of the FOD quite well. ? Most inaccuracies occur when extracting discrete peaks from the FOD. ? No method consistently resolves fibers crossing at low to moderate angles. ? Measures of dispersion show modest correlation with histological measures.
机译:摘要扩散磁共振成像(DMRI)广泛用于探测组织微观结构,目前是测量大脑光纤架构的唯一无创的方式。虽然在科学界,在科学界中使用了大量恢复体外纤维结构的方法,但是缺乏这些方法的直接,3D,对这些方法的定量验证毫无疑问。在这项研究中,我们研究了不同的高角度分辨率扩散成像(Hardi)模型和重建方法如何预测地面真实的组织学定义的纤维取向分布(FOD),以及在一系列物理和实验条件下调查它们的行为。测试的DMRI方法包括受约束的球形解卷积(CSD),Q珠成像(QBI),扩散取向变换(点),持续的角度结构(PAS)和神经突取向分散和密度成像(Noddi)方法。评估标准专注于FOD形状的总体协议,正确评估纤维群体的数量,以及方向的角度精度。此外,我们使组织学取向分散与从DMRI方法确定的纤维扩展进行比较。作为一般结果,没有Hardi方法在所有质量标准中都不表现出许多展示重建准确性的权衡。所有重建技术都描述了组织学平台的整体连续角度结构,其在单纤维和多纤维体素中具有良好的中等相关性(中位角相关系数?> 0.70)。然而,在提取FOD峰的数量和取向的离散测量中,没有方法是始终如一的。所有技术的主要不准确性往往是提取FOD的局部最大值,导致假阳性或假阴性峰。中值角误差为初级光纤方向〜10°,辅助光纤的〜20°,如果存在。对于大多数方法,这些结果在广泛的采集参数(扩散加权方向和B值的数量)上没有变化。无论采集参数如何,当光纤群体在近乎正交角度交叉​​时,所有方法都显示出在体素中解析多个纤维隔室的成功,没有方法,没有方法可以充分捕获低于中频角度(亮点?扩散MRI尺寸的纤维取向措施的亮度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号