首页> 外文期刊>RSC Advances >Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP
【24h】

Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP

机译:由MWCNT掺杂的太阳能盐作为CSP的有希望的高导热率材料

获取原文
获取原文并翻译 | 示例
           

摘要

Solar salt has great advantages in solar thermal power generation compared to other molten salts, but its thermal conductivity needs to be further improved. Multi-walled carbon nanotubes (MWCNTs) have excellent thermal properties that can improve the thermal conductivity of materials as additives. In this study, five kinds of solar salt/MWCNTs composites with different doping amounts were prepared by a high-temperature melting method. The results showed that doping with MWCNTs can indeed improve the thermal properties of solar salt. We studied their quantitative structure-activity relationship (QSAR) in order to explain these phenomena. According to the TG-DSC analysis, there was almost no change in the melting point and decomposition temperature; the XRD analysis revealed that the bulk of the material was still NaNO3 and KNO3, which did not change; and according to Archimedes' method, the density of the materials also changes little. The thermal conductivity of the material was measured by the laser flash method; the results showed that the thermal conductivity of the sample with 0.3% doping increased by 293%, reaching 1.65 W (m K)(-1). XPS analysis showed that the MWCNTs were purified and the impurity groups were largely removed after high-temperature melting. From the laser Raman analysis, the V-3 frequency peak of the sample with 0.3% doping was red-shifted, and for the other samples was blue-shifted. The SEM images showed that the sample with 0.3% doping was the most uniformly dispersed. When the doping amounts are appropriate, the improvement in thermal conductivity may be attributed to two reasons: (1) the MWCNTs can be uniformly dispersed, as the SEM shows; (2) tiny thermally conductive channels may be formed on the interface between the molten salt and the MWCNTs, thereby generating a boundary effect. This kind of composite material may help improve solar heat storage and heat transfer capacity, and thereby increase the efficiency of solar thermal power generation.
机译:相比于其它的熔融盐太阳能盐在太阳能热发电很大的优势,但其热导率有待进一步提高。多壁碳纳米管(MWCNT)具有优良的热性能,可提高材料作为添加剂的热传导率。在这项研究中,通过高温熔融法准备了5种不同掺杂量太阳能盐/多壁碳纳米管复合材料的。结果表明,与多壁碳纳米管掺杂确实可以提高太阳能盐的热性能。我们为了解释这些现象,研究了它们的定量构效关系(QSAR)。根据TG-DSC分析,有在熔点和分解温度几乎没有变化; XRD分析表明,该材料的大部分是静止的NaNO 3和KNO 3,其中并没有改变;并根据阿基米德法,该材料的密度也变化不大。的材料的热传导率通过激光闪光法测量;表明,用0.3%的掺杂的试样的热导率增加了293%,达到1.65宽(m K)的结果( - 1)。 XPS分析表明,多壁碳纳米管进行纯化和杂质组后高温熔化在很大程度上去除。从激光拉曼分析,用0.3%的掺杂样品的V-3频率峰红移,而对于其它样品是蓝移。该SEM图像表明,用0.3%的掺杂样品是最均匀地分散。当掺杂量是适当的,在热传导性的改善可以归因于两个原因:(1)多壁碳纳米管可均匀地分散,作为SEM显示; (2)微小导热通道可熔融盐和多壁碳纳米管之间的界面上形成,从而产生一个边界效应。这种复合材料的可能有助于改善太阳能蓄热和热传递能力,并由此增加太阳能热发电的效率。

著录项

  • 来源
    《RSC Advances》 |2018年第34期|共10页
  • 作者单位

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

    Chinese Acad Sci Qinghai Inst Salt Lakes Key Lab Comprehens &

    Highly Efficient Utilizat Sa Xining 810000 Qinghai Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号